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Notion of Logic

The word logic is inherited from classical 
Greek λόγος logos; meaning word, thought, 
idea, argument, account, reason, or 
principle. 

In common sense, logic is a tool for 
distinguishing between the true and the false 
(Averroes). 

Logic is the study of the principles and 
criteria of valid inference and demonstration.



Inference means making a conclusion based 

solely on what one already knows. 

Inference is the process of deriving logical 

conclusions from premises known or 

assumed to be true. 

Example

Flipper is a dolphin - premise

Every dolphin is a mammal - premise

Flipper is a mammal  - conclusion

Notion of Logic



• Informal logic is the study of natural language 

arguments.

• Argument is a set of sentences known as the 

premises, and another sentence known as the 

conclusion in which it is assumed that the truth of 

the conclusion follows from the premises.

Branches of Logic



Branches of Logic

• Formal logic is the study of inference with purely 

abstract content not related to any particular thing 

or property.  

• Mathematical logic is the study of formal features 

of logical inference: mathematical study of logic 

and the application of this study to other areas of 

mathematics.



Formal Logic

• Subject: definition of 

rules of proper inference 

(when correctly applied 

to true premises, lead to 

true conclusions).

• The first rules of formal 

logic  were written by 

Aristotle in his Organon.

Aristotle

(384-322 BC)

Branches of Logic



Syllogisms

• Aristotle defined a number of syllogisms, 

correct three-part inferences, that can be used 

as building blocks for more complex 

reasoning. 

Example: most famous syllogism

All men are mortal. Socrates is a man.

Therefore Socrates is mortal.

Two premises and conclusion here are true. 

Formal logic



• Structure of a syllogism

- Major premise - a general statement 

- Minor premise - a specific statement 

- Conclusion - based on the two premises 

Each part is a proposition in the form:
"All A are B," "Some A are B", 

"No A are B" or "Some A are not B" 

There are 24 types of logically distinct valid

syllogisms.

Formal logic



Does the truth of the conclusion follow from 

truth of the premises?

Example: valid inference with false premises 

• All apples are blue. (False)

• A banana is an apple. (False)

• Therefore, a banana is blue. (False)

For the conclusion to be necessarily true, the premises 

need to be true.

Formal logic



Example: invalid inference

• All A are B.

• C is a B.

• Therefore, C is an A.

This is invalid form of inference, because from true 

premises it can lead to a false conclusion: 

• All apples are fruit. (True)

• Bananas are fruit. (True)

• Therefore, bananas are apples. (False)

Formal logic



Properties of inference:

• For the conclusion to be necessarily true, the 

premises need to be true. 

• An inference can be valid even if the parts are false, 

and can be invalid even if the parts are true.

• A valid inference does not depend on the truth of the 

premises and conclusion, but on the rules of 

inference studied in formal logic.

• A valid form of inference with true premises will 

always have a true conclusion. 

Formal logic



Mathematical Logic

• Logic is the basis for all mathematical reasoning. To 

be able to understand and construct our own correct 

mathematical arguments we must understand logic. 

• Mathematical Logic studies formal features of logical 

inference using symbolic abstractions. 

• Mathematical Logic is 

- a tool for working with compound statements built 

from simpler statements.

- the foundation for expressing formal proofs in all 

branches of mathematics.

Branches of Logic



Mathematical Logic

• Mathematical Logic includes:

- a formal language for expressing 

compound statements

- a concise notation for writing them

- a methodology for objectively reasoning 

about their truth or falsity.

• Divided into two branches: 

propositional logic and predicate logic. 



Propositional Logic

Aristotle developed a detailed system of 

logic and Chrysippus of Soli introduced 

propositional logic centered around

logical operations. 

It is the logic of compound statements 

built from simpler statements using 

logic operators (NOT, AND, OR).
Chrysippus of Soli

(ca. 281 B.C. – 205 B.C.)



Propositional Logic

Some applications in computer science:

• Design of digital electronic circuits

• Construction of computer programs

• Verification of the correctness of programs

• Queries to databases & search engines

• Constructive geometric modeling



Definition of a Proposition

• A proposition is:

 a statement (a declarative sentence)

– with some definite meaning (not vague or 

ambiguous)

 having a truth value that is either true or false

(under interpretation) 
– it is never both, neither, or somewhere “in between”

– however, you might not know the actual truth value and 

the truth value might depend on the situation or context.



Propositions 

in Natural Language

Propositions:

• “It is raining.” 

• “London is the capital of China.”

• 1 + 2 = 2

NOT propositions:

• “Who is there?” (interrogative: no truth value)

• “1 + 2” (term: no truth value)

• “kudliva bokra” (no definite meaning in known 
languages)

• 7 – z = 77 (neither true nor false, since variables 
are not assigned with their values)

• “Go to the town!” (imperative: no truth value)



Q: Determine whether the following statements 
are propositions or not and explain your 
answers:

a) The Earth is flat.

b) Is it raining?

c) Stop and give way to pedestrians.

e) 2 + 8 =10

d) 2x – 7 = 8

Formally not a proposition because it is neither true nor 
false. Note that it can be turned into a proposition if we 
assign a value to the variable x.

Propositions in Natural Language



• Propositional variables (statement 
variables, atoms) are simply letters which 
represent propositions: p, q, r, s, t …

Correspond to simple (English) sentences.
Examples:

Proposition p is “I had salad for lunch“

Proposition q is  “Today is Monday”

 Proposition s is ….

 Proposition  t is …

Propositional Variables 



• Proposition is either true or false but not both

• Each proposition has a Truth Value. 

• If a proposition is 

- true, we denote that by T
- false, we denote that by F

Truth Value 

T :≡ True;  F :≡ False

“ :≡ ” means “ is defined as ”

Proposition p is  ”Sun is a planet”. It is ….
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Compound statements are built 

from simpler statements using 

logic operators or 

Boolean connectives.

These methods were discussed by 

the English mathematician 

George Boole in 1854 in his book 

“The Laws of Thought”.

George Boole

(1815-1864)

Compound Propositions 



• To create new propositions we may combine 

one, two or more propositions into complex 

(compound) propositions.

• Compound propositions are built up from atoms 

using operators such as NOT, AND, OR.

Correspond to compound English sentences

(“I had salad for lunch AND I had a steak for 

dinner.”)

Compound Propositions



• Operator or connective combines n operands

(expressions) into a larger expression,              

e.g., “+” in numeric expression.

• Unary operators take 1 operand (e.g., −3) 

Binary operators take 2 operands (e.g., 3  4)

• Propositional or Boolean operators 

(connectives) operate on propositions instead 

of numbers.

Operators / Connectives



Some Boolean Operators



Negation Operator

• The unary negation operator “¬” (logical NOT) 

transforms a proposition into its negation.

• The proposition ¬p is read "not p." 

• The truth value of ¬p, is the opposite of the 

truth value of p.

Example: If p = “I have brown hair.”

then ¬p = “I do not have brown hair.”



Truth Table for 

Negation Operator

Truth table for 

proposition and 

it’s negation:

p p 

T F 

F T 
 

 

Operand

column

Result

column

• A truth table displays 

the relationships 

between the truth 

values of propositions, 

when applying an 

operator to them.



Negation Exercise

Find the negation of the proposition

p=“At least 10 inches of rain fell today in Poole.”

and express this in simple English.

Solution: the negation is

¬p ="It is not the case that at least 10 inches of rain 

fell today in Poole."

This negation can be more simply expressed by

¬p = "Less than 10 inches of rain fell today in Poole."



Conjunction Operator

Binary conjunction operator “” (logical AND) 

combines two propositions to form their 

logical conjunction.

The conjunction pq is true when both p and q

are true and is false otherwise.

Example:
If p = “I had salad for lunch.” and 

q = “I had a steak for dinner.”, 

then pq = “I had salad for lunch 
and I had a steak for dinner.”



• Note:                                                           
a conjunction
p1  p2  …  pn

of n propositions
will have 2n rows
in its truth table.

• Note: ¬ NOT and  AND operations 
together are sufficient to express any 
Boolean truth table!

Conjunction Truth Table

p q pq  

F F F  

F T F  

T F F  

T T T  
 

 

Operand Columns Result Column



Conjunction Exercise

For the two given propositions

p=“Today is Tuesday.”

q=“It is raining today.”

when the conjunction is false?

Solution: the conjunction

pq =“Today is Tuesday and 

it is raining today."

is false on any day that is not a Tuesday and on

Tuesdays when it does not rain.



• Binary disjunction operator “” (logical OR) 

combines two propositions to form their 

logical disjunction.

• Example:

• p=“My car has a bad engine.”

• q=“My car has a bad carburettor.”

• pq=“Either my car has a bad engine, or

my car has a bad carburettor.” After the downward-

pointing “axe” of “”

splits the wood, you

can take 1 piece OR 

the other, or both.



Disjunction Operator



• Note that pq means

that p is true, or q is

true, or both are true!

• This operation is

also called inclusive or,

because it includes the

possibility that both p and q are true.

• Note: “¬” NOT and “” OR together are 

also universal.

Disjunction Truth Table

p q pq

F F F

F T T

T F T

T T T

Note

difference

from AND



Disjunction Exercise

For the two given propositions

p=“Today is Tuesday.”

q=“It is raining today.”

when the disjunction is false?

Solution: the disjunction

pq =“Today is Tuesday or it is raining today."

is only false on days that are not Tuesdays when

it also does not rain.



Nested Propositional 

Expressions

• Use parentheses to group sub-expressions:

“I just saw my old friend, and either he’s 

grown or I’ve shrunk.” : f  (g  s)

(f  g)  s would mean something different

f  g  s would be ambiguous

• By convention, “¬” NOT takes precedence

over both “” and “”.

¬s  f means   (¬s)  f ,   not   ¬ (s  f)



Simple Exercise

p = “It rained last night”, 

q = “The sprinklers came on last night,” 

r = “The lawn was wet this morning.”

Translate each of the following into English:

• ¬p =

• r  ¬p =

 r  (p  q) =

“It didn’t rain last night.”

“The lawn was wet this morning,    

and it didn’t rain last night.”

Nested Propositional Expressions



Exclusive-Or Operator

• Binary exclusive-or operator “” (logical 

XOR) combines two propositions to form 

their logical “exclusive or” (exjunction).

Example:

• p = “I will earn an A in this course,”

• q = “I will drop this course,”

• p  q = “I will either earn an A in this 

course, or I will drop it (but not both!) ”

Topic #1.0 – Propositional Logic: Operators



• Note that pq means

that p is true, or q is

true, but not both!

• This operation is

called exclusive or,

because it excludes the

possibility that both p and q are true.

Exclusive-Or Truth Table

p q pq

F F F

F T T

T F T

T T F Note

difference

from OR.

Topic #1.0 – Propositional Logic: Operators



Exclusive-Or Exercise

For the two given propositions

p=“Today is Tuesday.”

q=“It is raining today.”

when the exclusive-or is false?

Solution: the exclusive-or

pq =“Today is either Tuesday or it is raining today, 

but not both."

is false on rainy Tuesdays and on any other weekday,

when it does not rain.



Boolean Operators Summary

Topic #1.0 – Propositional Logic: Operators



Some Alternative Notations

Topic #1.0 – Propositional Logic: Operators



Implication

• Implication (conditional statement) p  q is 

false when p is true and q is false, and true 

otherwise. 

• p is hypothesis (or antecedent or premise) 

and q is conclusion (or consequence).

• Note: The implication is false only when P is 

true and Q is false! 



Implication

• Equivalent forms:

 If p, then q

 p implies q

 If p, q

 p only if q

 p is a sufficient condition for q

 q if p

 q whenever p

 q is a necessary condition for p

p q pq  

F F F  

F T F  

T F F  

T T T  
 

 

p  q

T

T



Implication Example

Professor’s promise:

p  q : “If you get 100% on the final, then you 
will get an A.”

• If you manage to get a 100% on the final, then you 
would expect to receive an A: promise is kept

• If you do not get 100% you may or may not receive 
an A depending on other factors: promise can be 
kept  

• However, if you do get 100%, but the professor 
does not give you an A, you will feel cheated: false 
promise



Conditional Statement in 

Programming

Let a program statement take FALSE value, if 

there is an error (division by zero, etc.).

Conditional statement A  B in the form

if(A) then B; 

triggers an error event (FALSE value), only if

the condition A is TRUE and

B is FALSE, 

meaning an error happens when executing B.
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• Bit is a binary (base 
2) digit: 0 or 1.

• Bits may be used to 
represent truth 
values.

• By convention: 
0 represents “False”; 
1 represents “True”.

Topic #2 – Bits

John Tukey

(1915-2000)

This terminology was introduced by statistician 

John Tukey in 1946.

BIT – BInary digiT



BIT – BInary digiT

• Computers are made of a series of switches

• Each switch has two states:  ON or OFF

• Bit (Binary Digit) = Basic unit of information, 
representing one of two discrete states.  
The smallest unit of information within the computer.  

• The only thing a computer understands.

• Bit has one of two values:  1 (ON)  or 0 (OFF)

• Binary means base-2

OFF ON



Tables for Bit Operations

• Boolean algebra is like 

ordinary algebra except 

that variables stand for 

bits; + means “or”; 

multiplication means 

“and”.

• A variable is called 

Boolean variable if its 

value is either true or 

false.

AND 0 1

0 0 0

1 0 1

OR 0 1

0 0 1

1 1 1

XOR 0 1

0 0 1

1 1 0

NOT 0 1

1 0



Bit Strings

• Bit string of length n is an ordered sequence 
(series, tuple) of n0 bits.

• By convention, bit strings are (sometimes) 
written left to right: 

• the “first” bit of the bit string of length ten 
“1001101010” is 1.

• When a bit string represents a base-2 
number, by convention, the first (leftmost) bit 
is the most significant bit.  

• Example: 11012=8+4+1=13.

Topic #2 – Bits



Bitwise Operations

• Boolean operations can be extended to 

operate on bit strings as well as single 

bits.

E.g.:

01 1011 0110

11 0001 1101

11 1011 1111 Bit-wise OR

01 0001 0100 Bit-wise AND

10 1010 1011 Bit-wise XOR

Topic #2 – Bits
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Tautologies

Tautology is a compound proposition that 

is true no matter what the truth values of its 

atomic propositions are! When every row of 

the truth table gives T.

Example: p  p

 What is its truth table?

Topic #1.1 – Propositional Logic: Equivalences



Contradiction and Contingency

Contradiction is a compound proposition that 

is false no matter what! 

When every row of the truth table gives F

Example: p  p  

 Truth table?

A proposition that is neither a tautology nor 

a contradiction is called a contingency.

Topic #1.1 – Propositional Logic: Equivalences



Logical Equivalence

• Compound proposition p is 

logically equivalent to 

compound proposition q, 

written pq, if p and q contain 

the same truth values in all

rows of their truth tables

• They express the same truth 

function (the same function 

from values for atoms to values 

for the whole formula):            

“p if and only if q” or                   

“if p then q and conversely”

Topic #1.1 – Propositional Logic: Equivalences

p q p q  

F F F  

F T F  

T F F  

T T T  
 

 

T

p  q



Example: prove that pq  (p  q).

p q ppqq pp qq pp    qq ((pp    qq))

F F

F T

T F

T T

Proving Equivalence

via Truth Tables

F
T

T
T

T

T

T

T
T

T

F
F

F

F

F
F

F
F

T
T

Topic #1.1 – Propositional Logic: Equivalences



Equivalence Laws

• Equivalence rules provide a pattern or 

template that can be used to match all or part 

of a much more complicated proposition and 

to find an equivalence for it.

• These rules are similar to the arithmetic 

identities you may have learnt in algebra, but 

for propositional equivalences instead.

Topic #1.1 – Propositional Logic: Equivalences



• Identity:             pT  p      pF  p

• Domination:      pT  T      pF  F

• Idempotent:       pp  p       pp  p

• Double negation:       p  p

• Commutative:  pq  qp    pq  qp

• Associative:     (pq)r  p(qr)

(pq)r  p(qr)

Equivalence Laws



• Distributive:    

p(qr)  (pq)(pr)

p(qr)  (pq)(pr)

• De Morgan’s laws:

(pq)  p  q

(pq)  p  qAugustus De Morgan

(1806-1871)

Equivalence Laws



Derivation

Derivation is a finite sequence of propositions

each of which follows from the preceding one

in the sequence following equivalence laws:

p  q  r  …

Example:

(w  x) (w  z)  associative

((w  x)  w)  z  commutative

((x  w)  w)  z  associative

((x  (w  w))  z)  idempotent

(x  w)  z

Topic #1.1 – Propositional Logic: Equivalences



Review: Propositional Logic

• Atomic propositions: p, q, r, …

• Boolean operators:     …

• Compound propositions: s : (p  q)  r

• Equivalences: pq  (p  q)

• Proving equivalences using:

– Truth tables.

– Symbolic derivations: p  q  r …

Topic #1 – Propositional Logic



Questions?


