
Discrete
Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Unit materials

• Lecture notes

• Seminar handouts

are available at

http://gm.softalliance.net/

Advice: download and print lecture notes

before the next lecture

http://gm.softalliance.net/

http://www.craftsmanspace.comPropositional
Logic

Contents

• Notions of logic

• Branches of logic

• Propositional logic

• Boolean operators

• Logic and computing

• Equivalence rules and derivations

Notion of Logic

The word logic is inherited from classical
Greek λόγος logos; meaning word, thought,
idea, argument, account, reason, or
principle.

In common sense, logic is a tool for
distinguishing between the true and the false
(Averroes).

Logic is the study of the principles and
criteria of valid inference and demonstration.

Inference means making a conclusion based

solely on what one already knows.

Inference is the process of deriving logical

conclusions from premises known or

assumed to be true.

Example

Flipper is a dolphin - premise

Every dolphin is a mammal - premise

Flipper is a mammal - conclusion

Notion of Logic

• Informal logic is the study of natural language

arguments.

• Argument is a set of sentences known as the

premises, and another sentence known as the

conclusion in which it is assumed that the truth of

the conclusion follows from the premises.

Branches of Logic

Branches of Logic

• Formal logic is the study of inference with purely

abstract content not related to any particular thing

or property.

• Mathematical logic is the study of formal features

of logical inference: mathematical study of logic

and the application of this study to other areas of

mathematics.

Formal Logic

• Subject: definition of

rules of proper inference

(when correctly applied

to true premises, lead to

true conclusions).

• The first rules of formal

logic were written by

Aristotle in his Organon.

Aristotle

(384-322 BC)

Branches of Logic

Syllogisms

• Aristotle defined a number of syllogisms,

correct three-part inferences, that can be used

as building blocks for more complex

reasoning.

Example: most famous syllogism

All men are mortal. Socrates is a man.

Therefore Socrates is mortal.

Two premises and conclusion here are true.

Formal logic

• Structure of a syllogism

- Major premise - a general statement

- Minor premise - a specific statement

- Conclusion - based on the two premises

Each part is a proposition in the form:
"All A are B," "Some A are B",

"No A are B" or "Some A are not B"

There are 24 types of logically distinct valid

syllogisms.

Formal logic

Does the truth of the conclusion follow from

truth of the premises?

Example: valid inference with false premises

• All apples are blue. (False)

• A banana is an apple. (False)

• Therefore, a banana is blue. (False)

For the conclusion to be necessarily true, the premises

need to be true.

Formal logic

Example: invalid inference

• All A are B.

• C is a B.

• Therefore, C is an A.

This is invalid form of inference, because from true

premises it can lead to a false conclusion:

• All apples are fruit. (True)

• Bananas are fruit. (True)

• Therefore, bananas are apples. (False)

Formal logic

Properties of inference:

• For the conclusion to be necessarily true, the

premises need to be true.

• An inference can be valid even if the parts are false,

and can be invalid even if the parts are true.

• A valid inference does not depend on the truth of the

premises and conclusion, but on the rules of

inference studied in formal logic.

• A valid form of inference with true premises will

always have a true conclusion.

Formal logic

Mathematical Logic

• Logic is the basis for all mathematical reasoning. To

be able to understand and construct our own correct

mathematical arguments we must understand logic.

• Mathematical Logic studies formal features of logical

inference using symbolic abstractions.

• Mathematical Logic is

- a tool for working with compound statements built

from simpler statements.

- the foundation for expressing formal proofs in all

branches of mathematics.

Branches of Logic

Mathematical Logic

• Mathematical Logic includes:

- a formal language for expressing

compound statements

- a concise notation for writing them

- a methodology for objectively reasoning

about their truth or falsity.

• Divided into two branches:

propositional logic and predicate logic.

Propositional Logic

Aristotle developed a detailed system of

logic and Chrysippus of Soli introduced

propositional logic centered around

logical operations.

It is the logic of compound statements

built from simpler statements using

logic operators (NOT, AND, OR).
Chrysippus of Soli

(ca. 281 B.C. – 205 B.C.)

Propositional Logic

Some applications in computer science:

• Design of digital electronic circuits

• Construction of computer programs

• Verification of the correctness of programs

• Queries to databases & search engines

• Constructive geometric modeling

Definition of a Proposition

• A proposition is:

 a statement (a declarative sentence)

– with some definite meaning (not vague or

ambiguous)

 having a truth value that is either true or false

(under interpretation)
– it is never both, neither, or somewhere “in between”

– however, you might not know the actual truth value and

the truth value might depend on the situation or context.

Propositions

in Natural Language

Propositions:

• “It is raining.”

• “London is the capital of China.”

• 1 + 2 = 2

NOT propositions:

• “Who is there?” (interrogative: no truth value)

• “1 + 2” (term: no truth value)

• “kudliva bokra” (no definite meaning in known
languages)

• 7 – z = 77 (neither true nor false, since variables
are not assigned with their values)

• “Go to the town!” (imperative: no truth value)

Q: Determine whether the following statements
are propositions or not and explain your
answers:

a) The Earth is flat.

b) Is it raining?

c) Stop and give way to pedestrians.

e) 2 + 8 =10

d) 2x – 7 = 8

Formally not a proposition because it is neither true nor
false. Note that it can be turned into a proposition if we
assign a value to the variable x.

Propositions in Natural Language

• Propositional variables (statement
variables, atoms) are simply letters which
represent propositions: p, q, r, s, t …

Correspond to simple (English) sentences.
Examples:

Proposition p is “I had salad for lunch“

Proposition q is “Today is Monday”

 Proposition s is ….

 Proposition t is …

Propositional Variables

• Proposition is either true or false but not both

• Each proposition has a Truth Value.

• If a proposition is

- true, we denote that by T
- false, we denote that by F

Truth Value

T :≡ True; F :≡ False

“ :≡ ” means “ is defined as ”

Proposition p is ”Sun is a planet”. It is ….

Contents

• Notions of logic

• Branches of logic

• Propositional logic

• Boolean operators

• Logic and computing

• Equivalence rules and derivations

Compound statements are built

from simpler statements using

logic operators or

Boolean connectives.

These methods were discussed by

the English mathematician

George Boole in 1854 in his book

“The Laws of Thought”.

George Boole

(1815-1864)

Compound Propositions

• To create new propositions we may combine

one, two or more propositions into complex

(compound) propositions.

• Compound propositions are built up from atoms

using operators such as NOT, AND, OR.

Correspond to compound English sentences

(“I had salad for lunch AND I had a steak for

dinner.”)

Compound Propositions

• Operator or connective combines n operands

(expressions) into a larger expression,

e.g., “+” in numeric expression.

• Unary operators take 1 operand (e.g., −3)

Binary operators take 2 operands (e.g., 3  4)

• Propositional or Boolean operators

(connectives) operate on propositions instead

of numbers.

Operators / Connectives

Some Boolean Operators

Negation Operator

• The unary negation operator “¬” (logical NOT)

transforms a proposition into its negation.

• The proposition ¬p is read "not p."

• The truth value of ¬p, is the opposite of the

truth value of p.

Example: If p = “I have brown hair.”

then ¬p = “I do not have brown hair.”

Truth Table for

Negation Operator

Truth table for

proposition and

it’s negation:

p p

T F

F T

Operand

column

Result

column

• A truth table displays

the relationships

between the truth

values of propositions,

when applying an

operator to them.

Negation Exercise

Find the negation of the proposition

p=“At least 10 inches of rain fell today in Poole.”

and express this in simple English.

Solution: the negation is

¬p ="It is not the case that at least 10 inches of rain

fell today in Poole."

This negation can be more simply expressed by

¬p = "Less than 10 inches of rain fell today in Poole."

Conjunction Operator

Binary conjunction operator “” (logical AND)

combines two propositions to form their

logical conjunction.

The conjunction pq is true when both p and q

are true and is false otherwise.

Example:
If p = “I had salad for lunch.” and

q = “I had a steak for dinner.”,

then pq = “I had salad for lunch
and I had a steak for dinner.”

• Note:
a conjunction
p1  p2  …  pn

of n propositions
will have 2n rows
in its truth table.

• Note: ¬ NOT and  AND operations
together are sufficient to express any
Boolean truth table!

Conjunction Truth Table

p q pq

F F F

F T F

T F F

T T T

Operand Columns Result Column

Conjunction Exercise

For the two given propositions

p=“Today is Tuesday.”

q=“It is raining today.”

when the conjunction is false?

Solution: the conjunction

pq =“Today is Tuesday and

it is raining today."

is false on any day that is not a Tuesday and on

Tuesdays when it does not rain.

• Binary disjunction operator “” (logical OR)

combines two propositions to form their

logical disjunction.

• Example:

• p=“My car has a bad engine.”

• q=“My car has a bad carburettor.”

• pq=“Either my car has a bad engine, or

my car has a bad carburettor.” After the downward-

pointing “axe” of “”

splits the wood, you

can take 1 piece OR

the other, or both.



Disjunction Operator

• Note that pq means

that p is true, or q is

true, or both are true!

• This operation is

also called inclusive or,

because it includes the

possibility that both p and q are true.

• Note: “¬” NOT and “” OR together are

also universal.

Disjunction Truth Table

p q pq

F F F

F T T

T F T

T T T

Note

difference

from AND

Disjunction Exercise

For the two given propositions

p=“Today is Tuesday.”

q=“It is raining today.”

when the disjunction is false?

Solution: the disjunction

pq =“Today is Tuesday or it is raining today."

is only false on days that are not Tuesdays when

it also does not rain.

Nested Propositional

Expressions

• Use parentheses to group sub-expressions:

“I just saw my old friend, and either he’s

grown or I’ve shrunk.” : f  (g  s)

(f  g)  s would mean something different

f  g  s would be ambiguous

• By convention, “¬” NOT takes precedence

over both “” and “”.

¬s  f means (¬s)  f , not ¬ (s  f)

Simple Exercise

p = “It rained last night”,

q = “The sprinklers came on last night,”

r = “The lawn was wet this morning.”

Translate each of the following into English:

• ¬p =

• r  ¬p =

 r  (p  q) =

“It didn’t rain last night.”

“The lawn was wet this morning,

and it didn’t rain last night.”

Nested Propositional Expressions

Exclusive-Or Operator

• Binary exclusive-or operator “” (logical

XOR) combines two propositions to form

their logical “exclusive or” (exjunction).

Example:

• p = “I will earn an A in this course,”

• q = “I will drop this course,”

• p  q = “I will either earn an A in this

course, or I will drop it (but not both!) ”

Topic #1.0 – Propositional Logic: Operators

• Note that pq means

that p is true, or q is

true, but not both!

• This operation is

called exclusive or,

because it excludes the

possibility that both p and q are true.

Exclusive-Or Truth Table

p q pq

F F F

F T T

T F T

T T F Note

difference

from OR.

Topic #1.0 – Propositional Logic: Operators

Exclusive-Or Exercise

For the two given propositions

p=“Today is Tuesday.”

q=“It is raining today.”

when the exclusive-or is false?

Solution: the exclusive-or

pq =“Today is either Tuesday or it is raining today,

but not both."

is false on rainy Tuesdays and on any other weekday,

when it does not rain.

Boolean Operators Summary

Topic #1.0 – Propositional Logic: Operators

Some Alternative Notations

Topic #1.0 – Propositional Logic: Operators

Implication

• Implication (conditional statement) p  q is

false when p is true and q is false, and true

otherwise.

• p is hypothesis (or antecedent or premise)

and q is conclusion (or consequence).

• Note: The implication is false only when P is

true and Q is false!

Implication

• Equivalent forms:

 If p, then q

 p implies q

 If p, q

 p only if q

 p is a sufficient condition for q

 q if p

 q whenever p

 q is a necessary condition for p

p q pq

F F F

F T F

T F F

T T T

p  q

T

T

Implication Example

Professor’s promise:

p  q : “If you get 100% on the final, then you
will get an A.”

• If you manage to get a 100% on the final, then you
would expect to receive an A: promise is kept

• If you do not get 100% you may or may not receive
an A depending on other factors: promise can be
kept

• However, if you do get 100%, but the professor
does not give you an A, you will feel cheated: false
promise

Conditional Statement in

Programming

Let a program statement take FALSE value, if

there is an error (division by zero, etc.).

Conditional statement A  B in the form

if(A) then B;

triggers an error event (FALSE value), only if

the condition A is TRUE and

B is FALSE,

meaning an error happens when executing B.

Contents

• Notions of logic

• Branches of logic

• Propositional logic

• Boolean operators

• Logic and computing

• Equivalence rules and derivations

• Bit is a binary (base
2) digit: 0 or 1.

• Bits may be used to
represent truth
values.

• By convention:
0 represents “False”;
1 represents “True”.

Topic #2 – Bits

John Tukey

(1915-2000)

This terminology was introduced by statistician

John Tukey in 1946.

BIT – BInary digiT

BIT – BInary digiT

• Computers are made of a series of switches

• Each switch has two states: ON or OFF

• Bit (Binary Digit) = Basic unit of information,
representing one of two discrete states.
The smallest unit of information within the computer.

• The only thing a computer understands.

• Bit has one of two values: 1 (ON) or 0 (OFF)

• Binary means base-2

OFF ON

Tables for Bit Operations

• Boolean algebra is like

ordinary algebra except

that variables stand for

bits; + means “or”;

multiplication means

“and”.

• A variable is called

Boolean variable if its

value is either true or

false.

AND 0 1

0 0 0

1 0 1

OR 0 1

0 0 1

1 1 1

XOR 0 1

0 0 1

1 1 0

NOT 0 1

1 0

Bit Strings

• Bit string of length n is an ordered sequence
(series, tuple) of n0 bits.

• By convention, bit strings are (sometimes)
written left to right:

• the “first” bit of the bit string of length ten
“1001101010” is 1.

• When a bit string represents a base-2
number, by convention, the first (leftmost) bit
is the most significant bit.

• Example: 11012=8+4+1=13.

Topic #2 – Bits

Bitwise Operations

• Boolean operations can be extended to

operate on bit strings as well as single

bits.

E.g.:

01 1011 0110

11 0001 1101

11 1011 1111 Bit-wise OR

01 0001 0100 Bit-wise AND

10 1010 1011 Bit-wise XOR

Topic #2 – Bits

Contents

• Notions of logic

• Branches of logic

• Propositional logic

• Boolean operators

• Logic and computing

• Equivalence rules and derivations

Tautologies

Tautology is a compound proposition that

is true no matter what the truth values of its

atomic propositions are! When every row of

the truth table gives T.

Example: p  p

 What is its truth table?

Topic #1.1 – Propositional Logic: Equivalences

Contradiction and Contingency

Contradiction is a compound proposition that

is false no matter what!

When every row of the truth table gives F

Example: p  p

 Truth table?

A proposition that is neither a tautology nor

a contradiction is called a contingency.

Topic #1.1 – Propositional Logic: Equivalences

Logical Equivalence

• Compound proposition p is

logically equivalent to

compound proposition q,

written pq, if p and q contain

the same truth values in all

rows of their truth tables

• They express the same truth

function (the same function

from values for atoms to values

for the whole formula):

“p if and only if q” or

“if p then q and conversely”

Topic #1.1 – Propositional Logic: Equivalences

p q p q

F F F

F T F

T F F

T T T

T

p  q

Example: prove that pq  (p  q).

p q ppqq pp qq pp  qq ((pp  qq))

F F

F T

T F

T T

Proving Equivalence

via Truth Tables

F
T

T
T

T

T

T

T
T

T

F
F

F

F

F
F

F
F

T
T

Topic #1.1 – Propositional Logic: Equivalences

Equivalence Laws

• Equivalence rules provide a pattern or

template that can be used to match all or part

of a much more complicated proposition and

to find an equivalence for it.

• These rules are similar to the arithmetic

identities you may have learnt in algebra, but

for propositional equivalences instead.

Topic #1.1 – Propositional Logic: Equivalences

• Identity: pT  p pF  p

• Domination: pT  T pF  F

• Idempotent: pp  p pp  p

• Double negation: p  p

• Commutative: pq  qp pq  qp

• Associative: (pq)r  p(qr)

(pq)r  p(qr)

Equivalence Laws

• Distributive:

p(qr)  (pq)(pr)

p(qr)  (pq)(pr)

• De Morgan’s laws:

(pq)  p  q

(pq)  p  qAugustus De Morgan

(1806-1871)

Equivalence Laws

Derivation

Derivation is a finite sequence of propositions

each of which follows from the preceding one

in the sequence following equivalence laws:

p  q  r  …

Example:

(w  x) (w  z)  associative

((w  x)  w)  z  commutative

((x  w)  w)  z  associative

((x  (w  w))  z)  idempotent

(x  w)  z

Topic #1.1 – Propositional Logic: Equivalences

Review: Propositional Logic

• Atomic propositions: p, q, r, …

• Boolean operators:     …

• Compound propositions: s : (p  q)  r

• Equivalences: pq  (p  q)

• Proving equivalences using:

– Truth tables.

– Symbolic derivations: p  q  r …

Topic #1 – Propositional Logic

Questions?

