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Contour Map

Data: 

1) Function z = f(x,y) or

2D array Fij=f(xi,yj)

• + two linear scalar arrays 

xi and yj

• xi,yj  can be given by 
default 

2) Levels ck

xi

yj



Contour is

an “implicit” curve

or several curves

f(x,y)=ck

Other terms: 
iso-contours, isolines,
topographic map

Contour Map



Contour is defined with:

1) Surface z=f(x,y)

2) Plane z=c

3) Intersection between
the surface and the plane

4) Projection of the curve
onto xy-plane.

Contour Map

Images by P. Agarwal et al., Duke University



Contour: Simple Example
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zij=f(xi,yj)
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Contour: Simple Example
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Steps of Contour Generation

1. Select a cell with 
an intersection point

2. If no cells to process – End

3. Process a cell: 
construct segments of the contour

4. Select next cell

5. Repeat Step 2



Check all MxN cells as:
for (i=1,M){

for (j=1,N){

select Cellij
}

}

Exhaustive Enumaration
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Exhaustive enumeration example
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Cell processing

1) Find all edge-surface intersection 
points – vertices of contour lines

2) Connect vertices into segments

3) Add segments to the contour or 
render segments
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Linear interpolation

f = f1(1-t) + f2t

t=
x-x1

x2-x1

For f=0

xp= x1 +
f1(x2-x1)

f1-f2
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Contour: Simple Example
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Edge intersection

x

f
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f2

x2x1 xp

0

Search on the edge

1) Continuous f(x,y)

2) Analytical solution for 
polynomial f

3) Numerical solution:
- bisections
- Newton search
- … 



Typical Cases in the Cell
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Two intersection points:

Four intersection points:

The case of one 
intersection point is 
reduced to 2 points by 
f+df in a vertex



All Cases in the Cell

Image by P. Rheingans, 
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Which way is correct?



Topological Ambiguity

Two possible contours with one 
ambiguous cell:

Image by P. Rheingans, 
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Topological Ambiguity

Topological ambiguity example

Contour

f(x,y)=0



Topological Ambiguity

Ueno: topological ambiguity example

The worst case of a contour map



1) Bilinear interpolation inside the cell

2) Contour as a hyperbola

3) Calculate center of hyperbola

4) Use center of hyperbola to resolve the 
topological ambiguity 

Resolving the Ambiguity with 
Hyperbolic Arcs



Bilinear interpolation inside the cell

Hyperbolic Arcs
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f = [f1(1-u) + f4u](1-v) +
[f2(1-u) + f3u]v

f = a0uv+ a1v+a2u+a3



Contour as a hyperbola

Hyperbolic Arcs

u

v

0 1

1

f1

f2 f3

f4

Contour f=0

a0uv+ a1v+a2u+a3=0

v=
-a3-a2u

a1+a0u

Center of hyperbola: 
u0=-a1/a0   v0=-a2/a0

u0

v0



Resolving ambiguities

Hyperbolic Arcs

u

v
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Four intersection points:

P1(u1,1), P2(1, v2)
P3(u3,0), P4(0, v4)

Hyperbolic arcs selection:

if(u1> u0) P1 P2 and P3 P4

if(u1< u0) P1 P4 and P2 P3



Isosurface

Other terms: 
implicit surface,
3D contour,
equipotential surface

3D grid & data

Data: 
1) Function ξ = f(x,y,z) or

3D array ξ ijk=f(xi,yj ,zk)

2) Levels ck

Shape model:
isosurfaces f(x,y,z) = ck



Isosurface 
Transformations and Rendering

Isosurface

Point cloud
Curves 
Polygons

Projection and 
Rendering

Images

Direct rendering



Isosurface Polygonization
Polygonization is the generation of a polygonal 
approximation of an isosurface.

Images by J. Bærenten



Exhaustive Enumeration
 Discrete data (voxel data from CT or MRI) is 

usually a set of points with scalar values in the 
nodes of a regular (number of neighbors is 
constant) and uniform (constant step size) grid.    

 Exhaustive enumeration 
- examines every cell, determining which cells 
intersect the surface;
- is very fast, because data values are known;
- surface/edge intersections are usually 
computed by linear interpolation.
- for N3 cells and N>1000, memory 
management becomes a problem.  

 Example: “Marching Cubes” [Lorensen and 
Cline 1987] processes a rectangular grid one 
plane at a time. Each cubic cell is polygonized 
according to a 256-entry table of ready 
polygon configurations.

Spatial Partitioning



Cell Polygonization

 Cell polygonization generates a set of polygons 
for the surface patch inside a single transversal 
cell. Steps:

1) Detect a cell edge which intersects the surface 
(different function signs in the endpoints). Such 
edge is assumed to contain a single intersection.

2) Compute an intersection point (surface vertex).

3) Connect surface vertices to form polygons.

Isosurface Polygonization



Surface vertex computation

Cell Polygonization

vertex =  corner1 + (1 - ) corner2
 = f2 / (f2 - f1)



Surface vertices connection

Cubic cell
Algorithm starts with a transversal edge, 
looks for the next transversal edge in the face 
and stops when the polygon is complete.

Cell Polygonization



Surface vertices connection

Table for cubic cells 
(“Marching Cubes”)
The configuration of the set 
of polygons for a cubic cell 
depends on the number of 
cell corners with positive 
function values. For 8 
corners, there are 
28 = 256 possible 
configurations. Only 15 basic 
configurations have to be 
stored. Others are 
equivalent to them due to 
symmetry and rotations.

Cell Polygonization



Topological Ambiguities
 Ambiguity occurs for certain configurations at the cell 

level.

 Alternate surface vertex connection for a cell face:

Isosurface Polygonization

Ambiguous corner configurations for a cube



Polygonization with Hyperbolic Arcs

 Class: continuous data and discrete data (with 
trilinear interpolation).

 Spatial partitioning: exhaustive enumeration 
with the given number of cells for each axis.

 Surface vertex computation: linear interpolation 
or binary search.

 Surface vertices connection: algorithm of a 
connectivity graph construction and tracing. 

 Ambiguity: trilinear interpolation in the cell and 
local bilinear interpolation on the cell face.

Isosurface Polygonization

http://hyperfun.org/wiki/doku.php?id=frep:isopol



Connectivity graph construction and tracing

1) Process 6 cell faces independently

2) Resolve topological ambiguities on each cell

3) Construct a graph with 12 nodes representing edges 
of the cell

4) Nodes in the graph are connected if there is a 
hyperbolic arc connecting them on some face

5) Find all cycles in the connectivity graph – they 
correspond to the polygons

Polygonization with Hyperbolic Arcs



Other Methods for Contouring

• Predictor-corrector continuation

• Subdivision

• Shrinkwrap



1) Select an initial contour point

2) Calculate the tangent line

3) Make step along the tangent 
direction (predictor)

4) Correct the selected point by search 
in the normal direction (corrector)

5) Connect the previous and the new points by 
a segment

Problems: 
high curvature areas, multiple components 

Predictor-Corrector Continuation

Other Methods for Contouring



Subdivision Method

1) Define a bounding box 
for the contour – original cell

2) Subdivide the cell 
in four subcells

3) Check all subcells for
cell-contour intersection

4) Repeat step 2 for all
non-empty subcells

5) Result: 
collection of cells enclosing the contour

Other Methods for Contouring



Shrinkwrap algorithm

1) Define an external polygon

2) Move its vertices 
to the contour

3) Subdivide its edges

4) Repeat steps 2 and 3
until the given precision 
is reached

1

2

3

Problems: 
high curvature areas, multiple components

Other Methods for Contouring



HyperFun Polygonizer

Input: function F(x,y,z) definition in 
HyperFun language and isovalue C

Algorithm: polygonization of the isosurface 
F(x,y,z) = C using hyperbolic arcs

Output: 
- triangular mesh (polygonized isosurface) 
rendered with OpenGL

- export to files in VRML and STL formats

Polygonization with Hyperbolic Arcs



HyperFun Polygonizer
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