
Algorithms for Contour Maps
and Isosurfaces

pasko@acm.org

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Contents

 Contour map definition

 Steps of contour generation

 Topological ambiguity

 Isosurface polygonization

 Polygonization with hyperbolic arcs

 Other methods of contouring

 References

Contour Map

Data:

1) Function z = f(x,y) or

2D array Fij=f(xi,yj)

• + two linear scalar arrays

xi and yj

• xi,yj can be given by
default

2) Levels ck

xi

yj

Contour is

an “implicit” curve

or several curves

f(x,y)=ck

Other terms:
iso-contours, isolines,
topographic map

Contour Map

Contour is defined with:

1) Surface z=f(x,y)

2) Plane z=c

3) Intersection between
the surface and the plane

4) Projection of the curve
onto xy-plane.

Contour Map

Images by P. Agarwal et al., Duke University

Contour: Simple Example

5

-55

5

-5 -5

-5

-5

5 5

5

5

5 55-5

Data:

zij=f(xi,yj)

Grid 4x4

Level z=0

Contour

f(x,y)=0

x

y

Contour: Simple Example

5

-55

5

One Cell

Contour

f(x,y)=0

x

y

Steps of Contour Generation

1. Select a cell with
an intersection point

2. If no cells to process – End

3. Process a cell:
construct segments of the contour

4. Select next cell

5. Repeat Step 2

Check all MxN cells as:
for (i=1,M){

for (j=1,N){

select Cellij
}

}

Exhaustive Enumaration

5

-55

5

-5 -5

-5

-5

5 5

5

5

5 55-5

x

y

Exhaustive enumeration example

1 3

987

2

4 5 6

Contour

f(x,y)=0

Cell processing

1) Find all edge-surface intersection
points – vertices of contour lines

2) Connect vertices into segments

3) Add segments to the contour or
render segments

5

-5

Edge intersection
5

5

x

f
f1

f2

x2x1 xp

0

Linear interpolation

f = f1(1-t) + f2t

t=
x-x1

x2-x1

For f=0

xp= x1 +
f1(x2-x1)

f1-f2

-15

x

y

Contour: Simple Example

5

-5

Change of function values

Edge intersection

x

f
f1

f2

x2x1 xp

0

Search on the edge

1) Continuous f(x,y)

2) Analytical solution for
polynomial f

3) Numerical solution:
- bisections
- Newton search
- …

Typical Cases in the Cell

-5

-55

5

55

5

-55

5-5 -5

Two intersection points:

Four intersection points:

The case of one
intersection point is
reduced to 2 points by
f+df in a vertex

All Cases in the Cell

Image by P. Rheingans,

-2

-55

5

Topological Ambiguity

Contour

f(x,y)=0

x

y

Which way is correct?

Topological Ambiguity

Two possible contours with one
ambiguous cell:

Image by P. Rheingans,

5

-25

5

-5 5

5

-5

5 5

5

5

5 55-5

x

y

Topological Ambiguity

Topological ambiguity example

Contour

f(x,y)=0

Topological Ambiguity

Ueno: topological ambiguity example

The worst case of a contour map

1) Bilinear interpolation inside the cell

2) Contour as a hyperbola

3) Calculate center of hyperbola

4) Use center of hyperbola to resolve the
topological ambiguity

Resolving the Ambiguity with
Hyperbolic Arcs

Bilinear interpolation inside the cell

Hyperbolic Arcs

u

v

0 1

1

f1

f2 f3

f4

f = [f1(1-u) + f4u](1-v) +
[f2(1-u) + f3u]v

f = a0uv+ a1v+a2u+a3

Contour as a hyperbola

Hyperbolic Arcs

u

v

0 1

1

f1

f2 f3

f4

Contour f=0

a0uv+ a1v+a2u+a3=0

v=
-a3-a2u

a1+a0u

Center of hyperbola:
u0=-a1/a0 v0=-a2/a0

u0

v0

Resolving ambiguities

Hyperbolic Arcs

u

v

0 1

1

f1

f2 f3

f4

u0

v0

P1

P2

P3

P4

Four intersection points:

P1(u1,1), P2(1, v2)
P3(u3,0), P4(0, v4)

Hyperbolic arcs selection:

if(u1> u0) P1 P2 and P3 P4

if(u1< u0) P1 P4 and P2 P3

Isosurface

Other terms:
implicit surface,
3D contour,
equipotential surface

3D grid & data

Data:
1) Function ξ = f(x,y,z) or

3D array ξ ijk=f(xi,yj ,zk)

2) Levels ck

Shape model:
isosurfaces f(x,y,z) = ck

Isosurface
Transformations and Rendering

Isosurface

Point cloud
Curves
Polygons

Projection and
Rendering

Images

Direct rendering

Isosurface Polygonization
Polygonization is the generation of a polygonal
approximation of an isosurface.

Images by J. Bærenten

Exhaustive Enumeration
 Discrete data (voxel data from CT or MRI) is

usually a set of points with scalar values in the
nodes of a regular (number of neighbors is
constant) and uniform (constant step size) grid.

 Exhaustive enumeration
- examines every cell, determining which cells
intersect the surface;
- is very fast, because data values are known;
- surface/edge intersections are usually
computed by linear interpolation.
- for N3 cells and N>1000, memory
management becomes a problem.

 Example: “Marching Cubes” [Lorensen and
Cline 1987] processes a rectangular grid one
plane at a time. Each cubic cell is polygonized
according to a 256-entry table of ready
polygon configurations.

Spatial Partitioning

Cell Polygonization

 Cell polygonization generates a set of polygons
for the surface patch inside a single transversal
cell. Steps:

1) Detect a cell edge which intersects the surface
(different function signs in the endpoints). Such
edge is assumed to contain a single intersection.

2) Compute an intersection point (surface vertex).

3) Connect surface vertices to form polygons.

Isosurface Polygonization

Surface vertex computation

Cell Polygonization

vertex = corner1 + (1 -) corner2
 = f2 / (f2 - f1)

Surface vertices connection

Cubic cell
Algorithm starts with a transversal edge,
looks for the next transversal edge in the face
and stops when the polygon is complete.

Cell Polygonization

Surface vertices connection

Table for cubic cells
(“Marching Cubes”)
The configuration of the set
of polygons for a cubic cell
depends on the number of
cell corners with positive
function values. For 8
corners, there are
28 = 256 possible
configurations. Only 15 basic
configurations have to be
stored. Others are
equivalent to them due to
symmetry and rotations.

Cell Polygonization

Topological Ambiguities
 Ambiguity occurs for certain configurations at the cell

level.

 Alternate surface vertex connection for a cell face:

Isosurface Polygonization

Ambiguous corner configurations for a cube

Polygonization with Hyperbolic Arcs

 Class: continuous data and discrete data (with
trilinear interpolation).

 Spatial partitioning: exhaustive enumeration
with the given number of cells for each axis.

 Surface vertex computation: linear interpolation
or binary search.

 Surface vertices connection: algorithm of a
connectivity graph construction and tracing.

 Ambiguity: trilinear interpolation in the cell and
local bilinear interpolation on the cell face.

Isosurface Polygonization

http://hyperfun.org/wiki/doku.php?id=frep:isopol

Connectivity graph construction and tracing

1) Process 6 cell faces independently

2) Resolve topological ambiguities on each cell

3) Construct a graph with 12 nodes representing edges
of the cell

4) Nodes in the graph are connected if there is a
hyperbolic arc connecting them on some face

5) Find all cycles in the connectivity graph – they
correspond to the polygons

Polygonization with Hyperbolic Arcs

Other Methods for Contouring

• Predictor-corrector continuation

• Subdivision

• Shrinkwrap

1) Select an initial contour point

2) Calculate the tangent line

3) Make step along the tangent
direction (predictor)

4) Correct the selected point by search
in the normal direction (corrector)

5) Connect the previous and the new points by
a segment

Problems:
high curvature areas, multiple components

Predictor-Corrector Continuation

Other Methods for Contouring

Subdivision Method

1) Define a bounding box
for the contour – original cell

2) Subdivide the cell
in four subcells

3) Check all subcells for
cell-contour intersection

4) Repeat step 2 for all
non-empty subcells

5) Result:
collection of cells enclosing the contour

Other Methods for Contouring

Shrinkwrap algorithm

1) Define an external polygon

2) Move its vertices
to the contour

3) Subdivide its edges

4) Repeat steps 2 and 3
until the given precision
is reached

1

2

3

Problems:
high curvature areas, multiple components

Other Methods for Contouring

HyperFun Polygonizer

Input: function F(x,y,z) definition in
HyperFun language and isovalue C

Algorithm: polygonization of the isosurface
F(x,y,z) = C using hyperbolic arcs

Output:
- triangular mesh (polygonized isosurface)
rendered with OpenGL

- export to files in VRML and STL formats

Polygonization with Hyperbolic Arcs

HyperFun Polygonizer

References

 Introduction to Implicit Surfaces,
J. Bloomenthal et al. (Eds.), Morgan Kaufmann,
1997.

 W. Lorensen, H. Cline, Marching Cubes: A high
resolution 3D surface construction algorithm,
Computer Graphics, Vol. 21, Nr. 4, July 1987.

 Pasko A., Pilyugin V., Pokrovskiy V. Geometric
modeling in the analysis of trivariate functions,
Computers and Graphics, vol.12, Nos.3/4, 1988,
pp.457-465.

