### Algorithms for Contour Maps and Isosurfaces

Alexander Pasko, Evgenii Maltsev, Dmitry Popov pasko@acm.org

## Contents

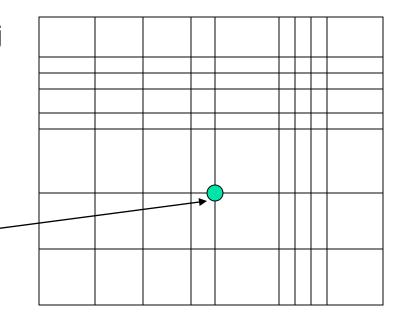
- Contour map definition
- Steps of contour generation
- Topological ambiguity
- Isosurface polygonization
- Polygonization with hyperbolic arcs
- Other methods of contouring
- References

# Contour Map y<sub>j</sub>

Data:

- 1) Function z = f(x,y) or 2D array  $F_{ij}=f(x_i,y_j)$
- + two linear scalar arrays
   x<sub>i</sub> and y<sub>j</sub>
- x<sub>i</sub>,y<sub>j</sub> can be given by default

2) Levels c<sub>k</sub>



X<sub>i</sub>

#### **Contour Map**

Contour is an "implicit" curve or several curves  $f(x,y)=c_k$ 

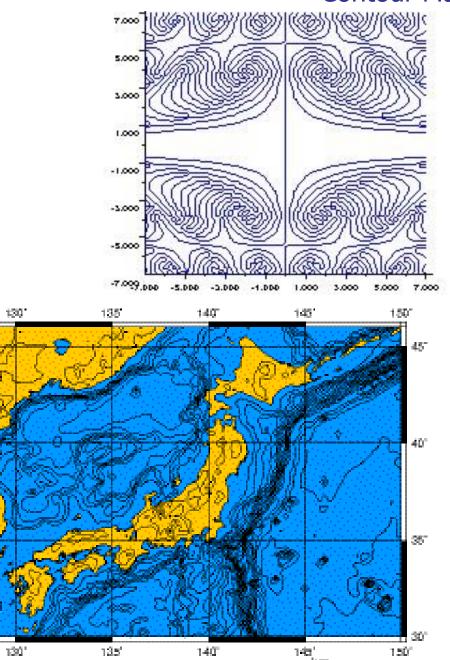
451

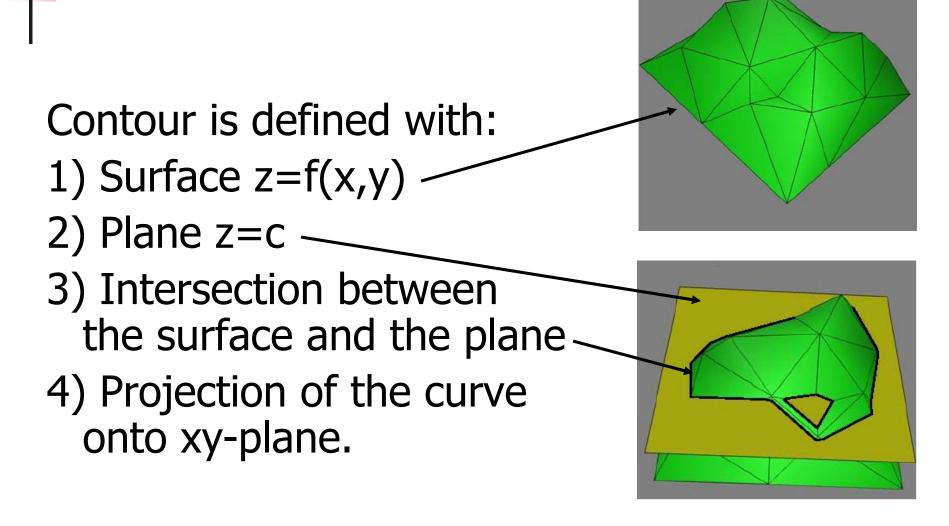
401

 $35^{\circ}$ 

30

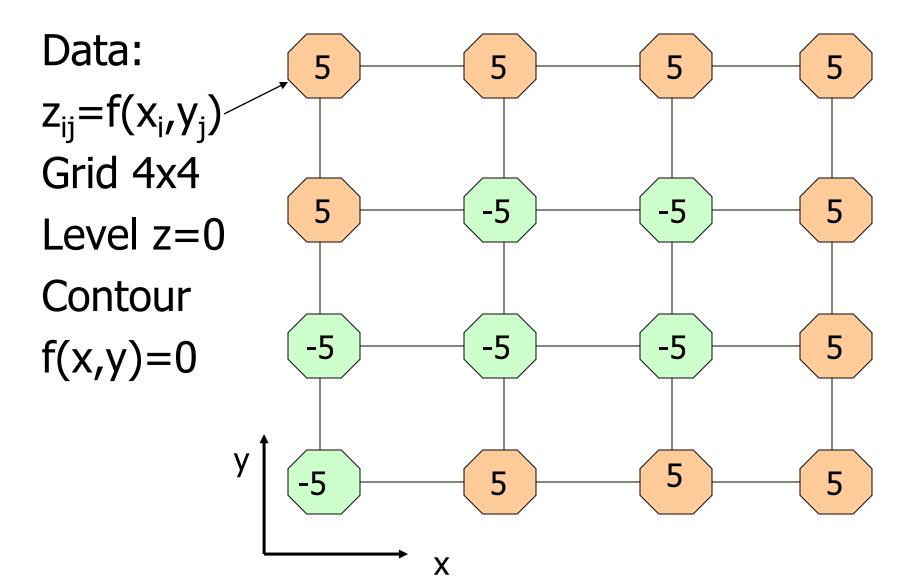
Other terms: iso-contours, isolines, topographic map

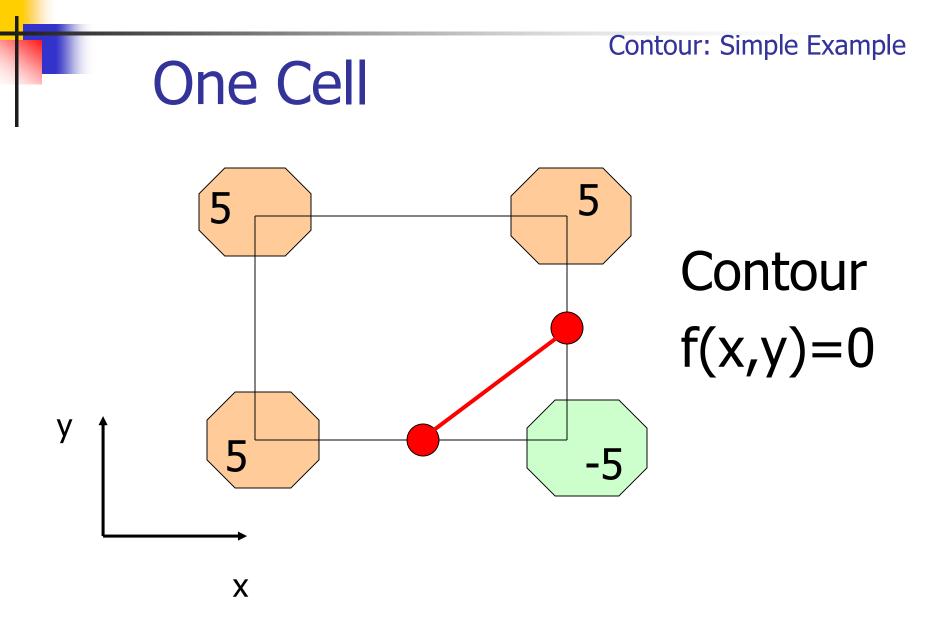




Images by P. Agarwal et al., Duke University

# **Contour: Simple Example**





# **Steps of Contour Generation**

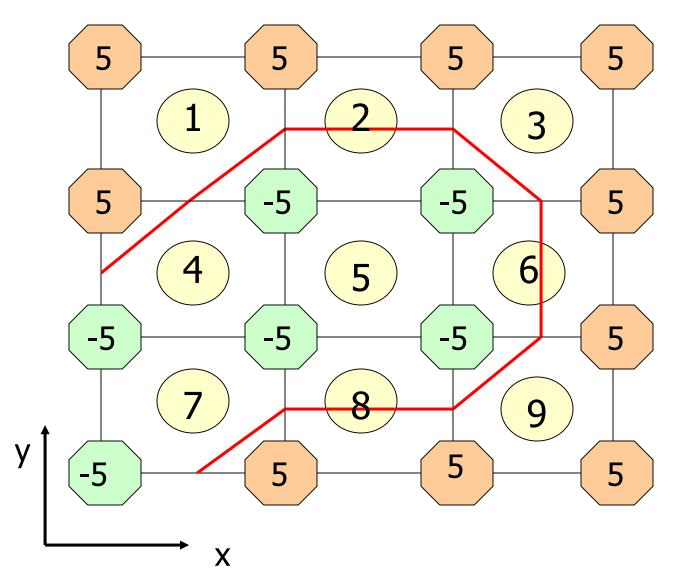
- 1. Select a cell with an intersection point
- 2. If no cells to process End
- 3. Process a cell: construct segments of the contour
- 4. Select next cell
- 5. Repeat Step 2

### **Exhaustive Enumaration**

```
Check all MxN cells as:
for (i=1,M){
for (j=1,N){
select Cell<sub>ij</sub>
}
```

### Exhaustive enumeration example

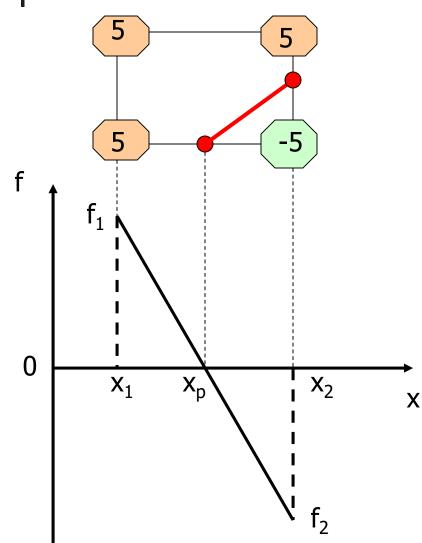
Contour f(x,y)=0



# Cell processing

- 1) Find all edge-surface intersection points vertices of contour lines
- 2) Connect vertices into segments
- 3) Add segments to the contour or render segments

# Edge intersection

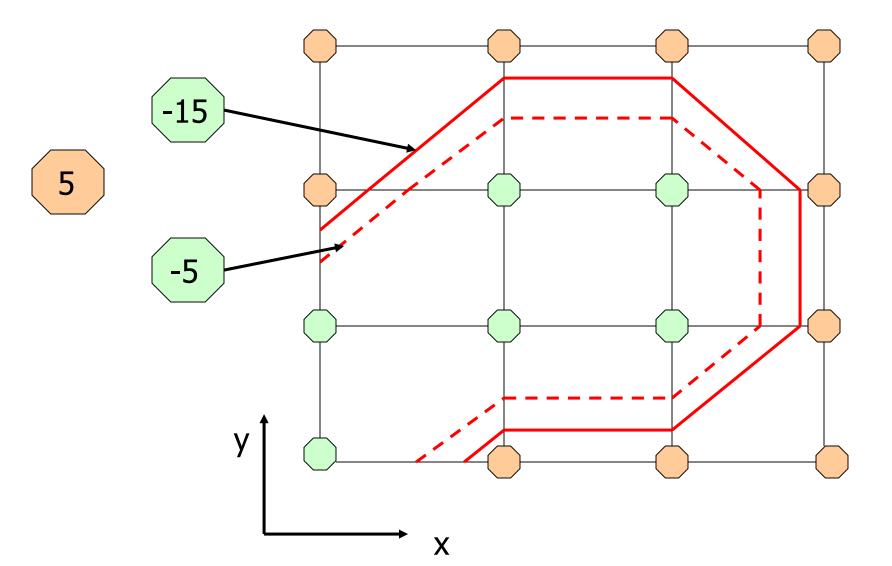


Linear interpolation

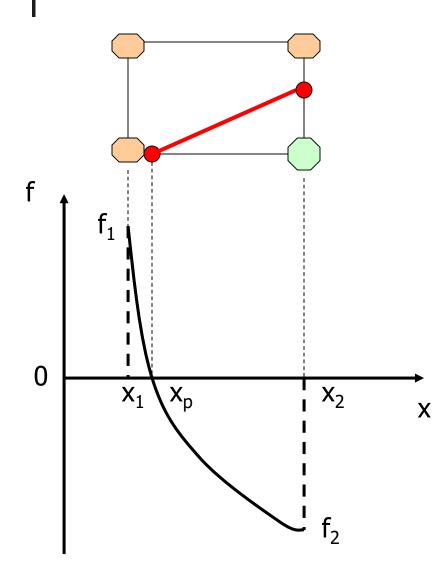
 $f = f_1(1-t) + f_2t$ x-x<sub>1</sub> x<sub>2</sub>-x<sub>1</sub> t= For f=0  $x_p = x_1 + \frac{f_1(x_2 - x_1)}{f_1 - f_2}$ 

#### Contour: Simple Example

#### Change of function values



#### Edge intersection

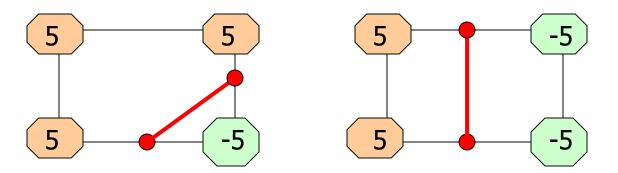


Search on the edge

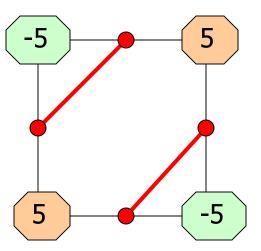
- 1) Continuous f(x,y)
- 2) Analytical solution for polynomial f
- 3) Numerical solution:
  - bisections
  - Newton search

# Typical Cases in the Cell

#### Two intersection points:



#### Four intersection points:



The case of one intersection point is reduced to 2 points by f+df in a vertex

# All Cases in the Cell

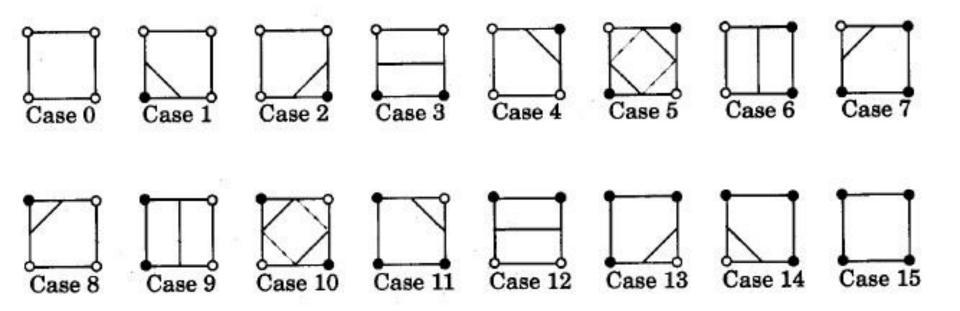
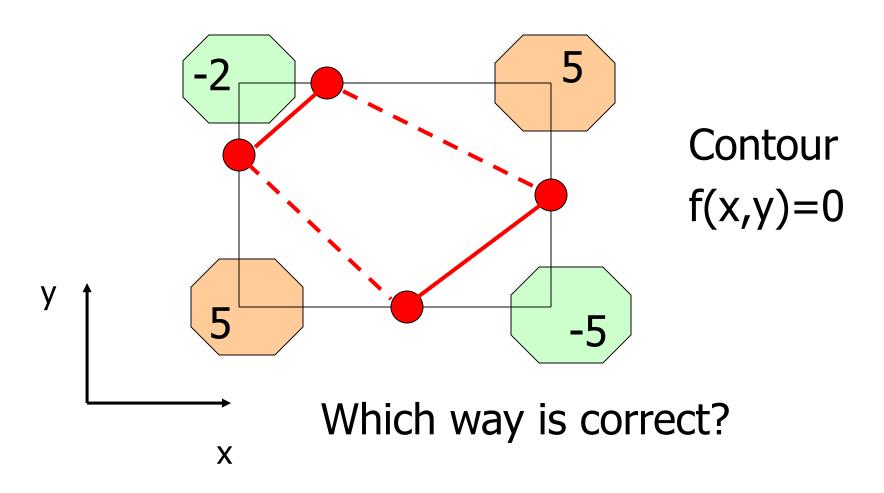


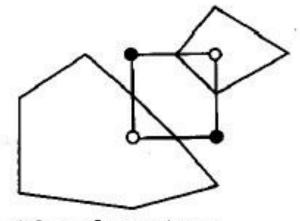
Image by P. Rheingans,

# **Topological Ambiguity**



**Topological Ambiguity** 

# Two possible contours with one ambiguous cell:



a) break contour

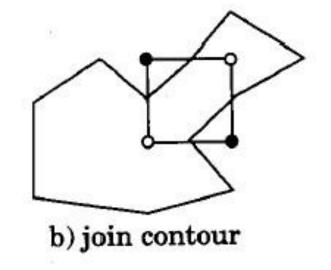
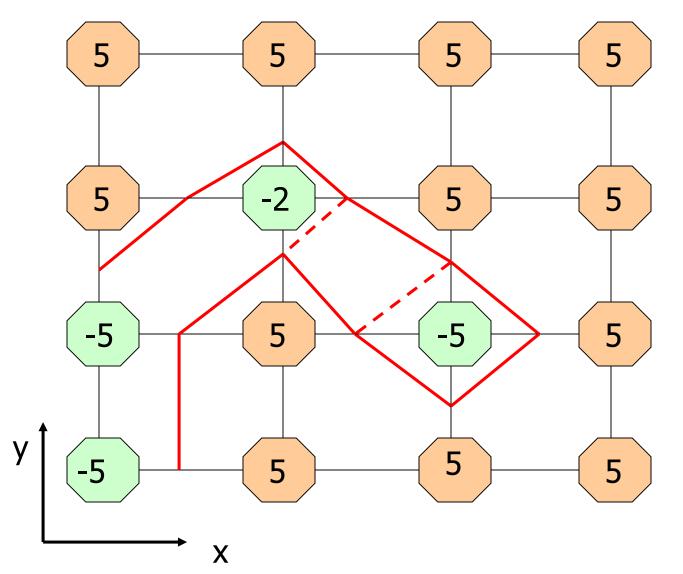


Image by P. Rheingans,

**Topological Ambiguity** 

### Topological ambiguity example

Contour f(x,y)=0



#### Topological Ambiguity Ueno: topological ambiguity example



#### The worst case of a contour map

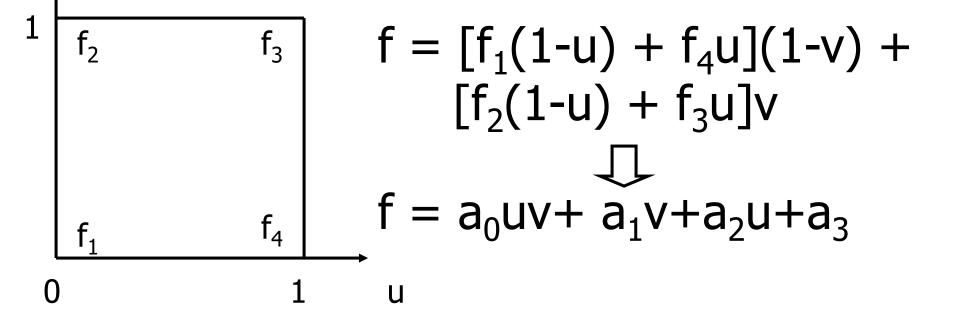
Resolving the Ambiguity with Hyperbolic Arcs

- 1) Bilinear interpolation inside the cell
- 2) Contour as a hyperbola
- 3) Calculate center of hyperbola
- 4) Use center of hyperbola to resolve the topological ambiguity

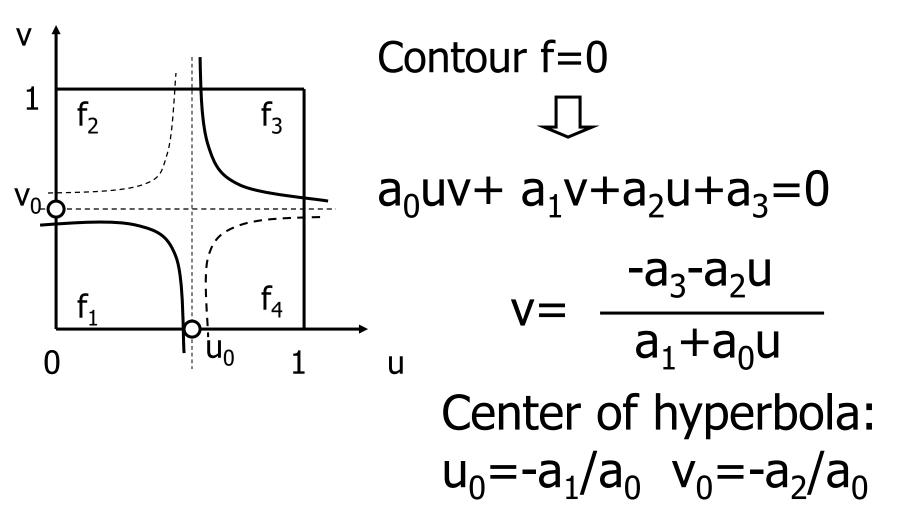
Hyperbolic Arcs

### Bilinear interpolation inside the cell

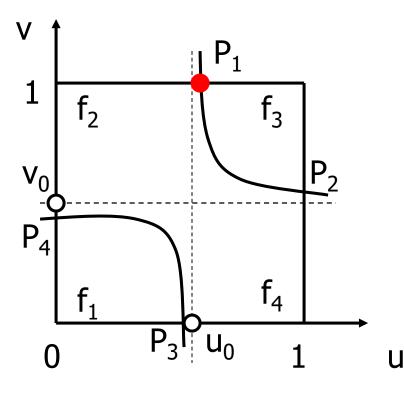
V



#### Contour as a hyperbola



### **Resolving ambiguities**



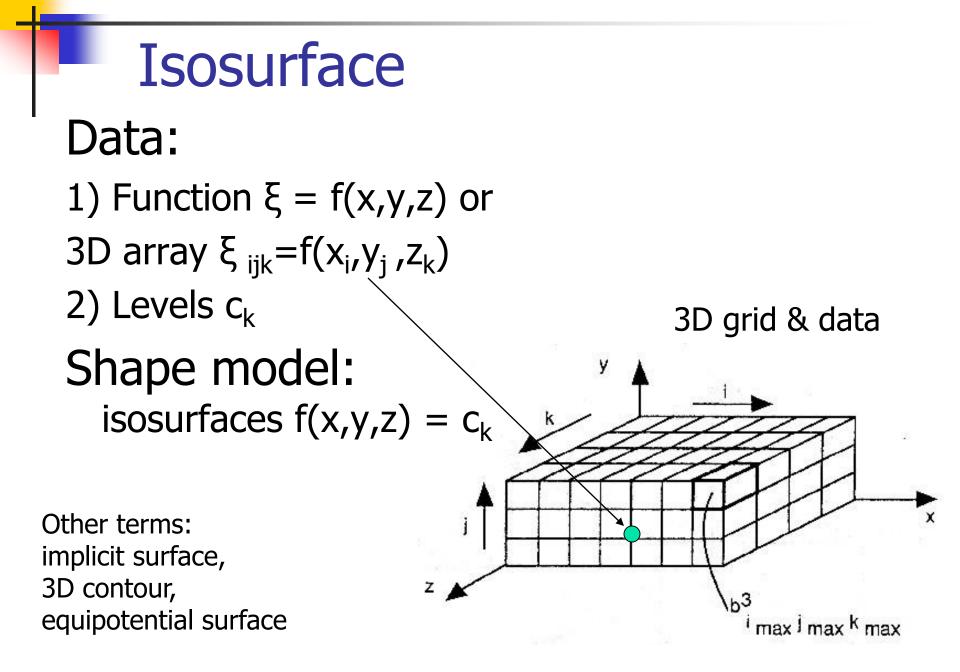
Four intersection points:

 $P_1(u_1,1), P_2(1, v_2)$  $P_3(u_3,0), P_4(0, v_4)$ 

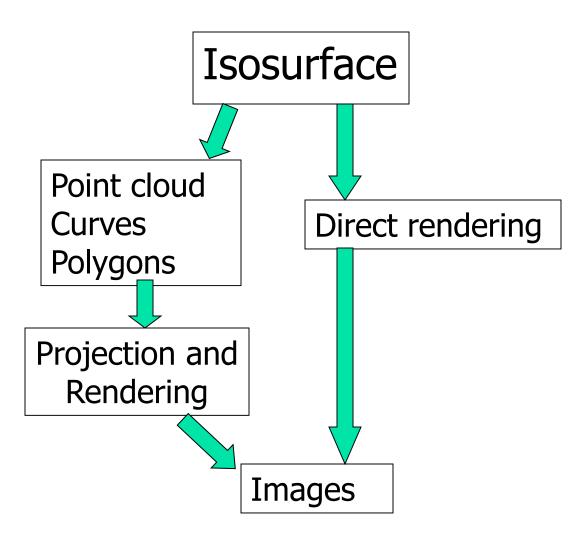
Hyperbolic arcs selection:

if( $u_1 > u_0$ )  $P_1 P_2$  and  $P_3 P_4$ 

if( $u_1 < u_0$ )  $P_1 P_4$  and  $P_2 P_3$ 

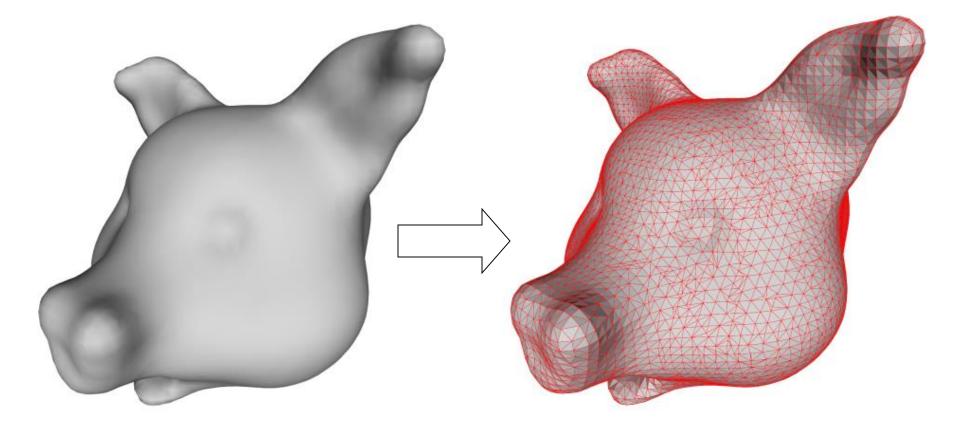


# Isosurface Transformations and Rendering



# **Isosurface Polygonization**

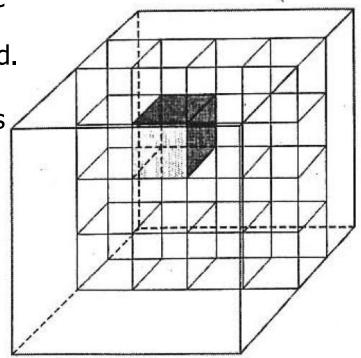
*Polygonization* is the generation of a polygonal approximation of an isosurface.



#### **Spatial Partitioning**

# **Exhaustive Enumeration**

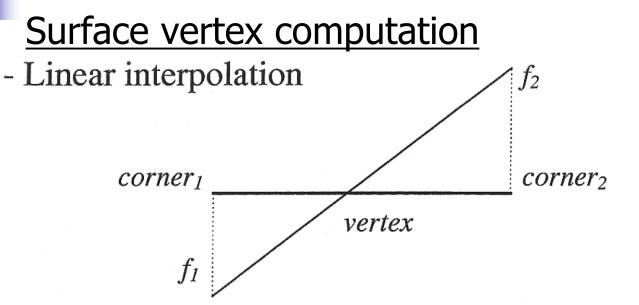
- Discrete data (voxel data from CT or MRI) is usually a set of points with scalar values in the nodes of a *regular* (number of neighbors is constant) and *uniform* (constant step size) grid.
- Exhaustive enumeration
  - examines **every** cell, determining which cells intersect the surface;
  - is very fast, because data values are known;
  - surface/edge intersections are usually computed by linear interpolation.
  - for N<sup>3</sup> cells and N>1000, memory management becomes a problem.
  - Example: "*Marching Cubes*" [Lorensen and Cline 1987] processes a rectangular grid one plane at a time. Each cubic cell is polygonized according to a 256-entry table of ready polygon configurations.



# **Cell Polygonization**

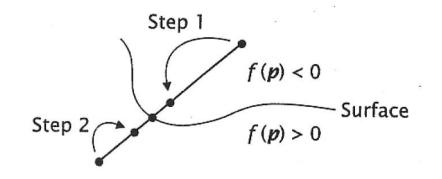
- Cell polygonization generates a set of polygons for the surface patch inside a single transversal cell. Steps:
  - 1) Detect a cell edge which intersects the surface (different function signs in the endpoints). Such edge is assumed to contain a single intersection.
  - 2) Compute an intersection point (surface vertex).
  - 3) Connect surface vertices to form polygons.

#### Cell Polygonization



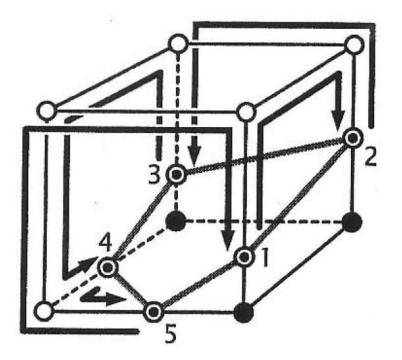
 $vertex = \alpha \ corner1 + (1 - \alpha) \ corner2$  $\alpha = f2 / (f2 - f1)$ 

- Binary section (binary subdivision)



#### Surface vertices connection

#### Cubic cell Algorithm starts with a transversal edge, looks for the next transversal edge in the face and stops when the polygon is complete.

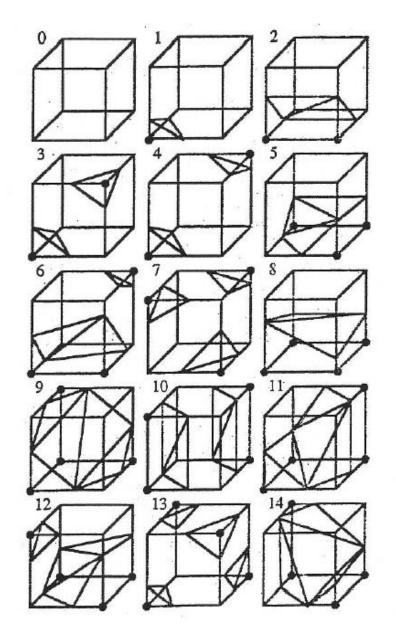


Negative function
 Positive function
 Surface vertex

#### Cell Polygonization

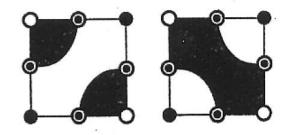
#### Surface vertices connection

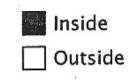
Table for cubic cells ("Marching Cubes") The configuration of the set of polygons for a cubic cell depends on the number of cell corners with positive function values. For 8 corners, there are  $2^8 = 256$  possible configurations. Only 15 basic configurations have to be stored. Others are equivalent to them due to symmetry and rotations.



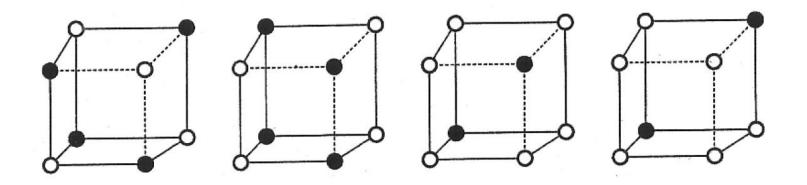
# **Topological Ambiguities**

- Ambiguity occurs for certain configurations at the cell level.
- Alternate surface vertex connection for a cell face:
  - Positive corner
     Negative corner
     Surface vertex





Ambiguous corner configurations for a cube



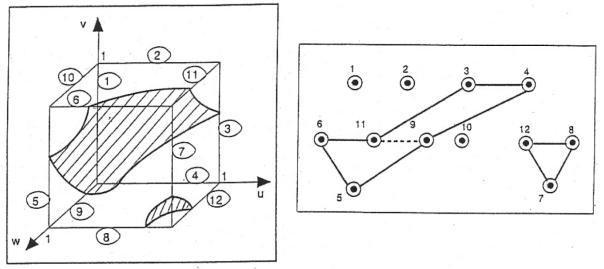
# Polygonization with Hyperbolic Arcs

- <u>Class</u>: continuous data and discrete data (with trilinear interpolation).
- <u>Spatial partitioning</u>: exhaustive enumeration with the given number of cells for each axis.
- <u>Surface vertex computation</u>: linear interpolation or binary search.
- <u>Surface vertices connection</u>: algorithm of a connectivity graph construction and tracing.
- <u>Ambiguity</u>: trilinear interpolation in the cell and local bilinear interpolation on the cell face.

http://hyperfun.org/wiki/doku.php?id=frep:isopol

#### Connectivity graph construction and tracing

- 1) Process 6 cell faces independently
- 2) Resolve topological ambiguities on each cell
- 3) Construct a graph with 12 nodes representing edges of the cell
- 4) Nodes in the graph are connected if there is a hyperbolic arc connecting them on some face
- 5) Find all cycles in the connectivity graph they correspond to the polygons



### **Other Methods for Contouring**

- Predictor-corrector continuation
- Subdivision
- Shrinkwrap

### **Predictor-Corrector Continuation**

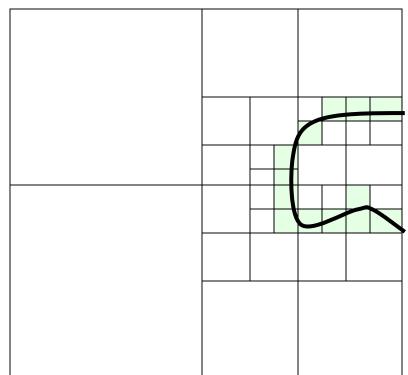
- 1) Select an initial contour point
- 2) Calculate the tangent line
- 3) Make step along the tangent direction (predictor)
- 4) Correct the selected point by search in the normal direction (corrector)
- 5) Connect the previous and the new points by a segment

Problems:

high curvature areas, multiple components

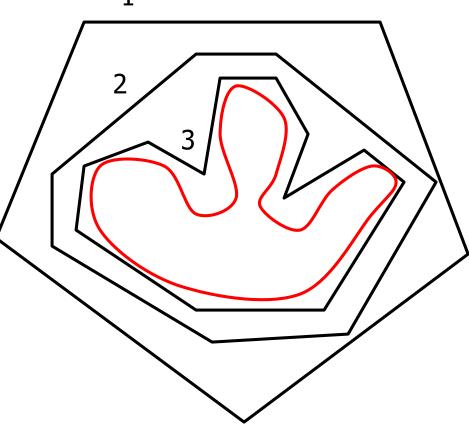
### Subdivision Method

- 1) Define a bounding box for the contour – original cell
- 2) Subdivide the cell in four subcells
- 3) Check all subcells for cell-contour intersection
- 4) Repeat step 2 for all non-empty subcells
- 5) Result: \_\_\_\_\_\_ collection of cells enclosing the contour



### Shrinkwrap algorithm

- 1) Define an external polygon
- 2) Move its vertices to the contour
- 3) Subdivide its edges
- 4) Repeat steps 2 and 3 until the given precision is reached



Problems: high curvature areas, multiple components

Polygonization with Hyperbolic Arcs

# HyperFun Polygonizer

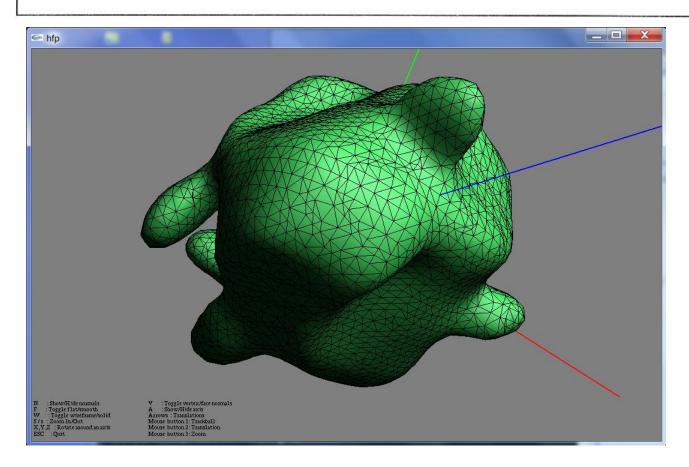
### Input: function F(x,y,z) definition in HyperFun language and isovalue CAlgorithm: polygonization of the isosurface F(x,y,z) = C using hyperbolic arcs

Output:

- triangular mesh (polygonized isosurface) rendered with OpenGL
- export to files in VRML and STL formats

#### HyperFun Polygonizer

```
function(x[3], a[1])
{
sphere = 5^2 - (x[1]^2 + x[2]^2 + x[3]^2);
function = sphere + hfNoiseG(x, 1.8, 0.7, 1.4);
}
```



### References

- Introduction to Implicit Surfaces,
   J. Bloomenthal et al. (Eds.), Morgan Kaufmann, 1997.
- W. Lorensen, H. Cline, Marching Cubes: A high resolution 3D surface construction algorithm, *Computer Graphics*, Vol. 21, Nr. 4, July 1987.
- Pasko A., Pilyugin V., Pokrovskiy V. Geometric modeling in the analysis of trivariate functions, Computers and Graphics, vol.12, Nos.3/4, 1988, pp.457-465.