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Points representation

Points in 2D and 3D spaces are represented as row 
or a column matrix. The object transformations are 
presented in matrix form.

2D space

[x, y]

or

3D space

[x, y, z]

or

z



Matrices and Matrix

Operators

Matrix is a rectangular 

table of elements with 

rows and columns:

A = (ai,j) mn  

(m, n – dimensions)

Matrix Operations:

Addition/ Subtraction

 Identity

Multiplication 

u11 u12………u1k

u21 u22………u2k

………………….

un1 un2………..unk



Scalar multiplication

If a Matrix A and a number c are given, we may define 

the scalar multiplication cA by 

(c A) [ i, j ] = c A [ i, j ]



Matrix Multiplication

• Multiplication of two matrices is well-defined only 
if the number of columns of the first matrix is the 
same as the number of rows of the second 
matrix. 

• If A is an m-by-n matrix (m rows, n columns) and 
B is an n-by-p matrix (n rows, p columns), then 
their product AB is the m-by-p matrix (m rows, p
columns) given by

(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * 

B[n, j]

for each pair i and j.



Matrix Multiplication

• It is easy to remember how to do this by imagining the 

first matrix as being built out of row vectors and the 

second matrix as being built out of (column) vectors:

and 

Then  

where in each product above one multiplies a row vector 

by a column vector by multiplying the corresponding 

entries and adding up the results



This multiplication has the following properties:

(AB)C = A(BC) 

for all k-by-m matrices A, m-by-n matrices B and n-by-p matrices C
("associativity"). 

(A + B)C = AC + BC

for all m-by-n matrices A and B and n-by-k matrices C ("right distributivity").

C(A + B) = CA + CB

for all m-by-n matrices A and B and k-by-m matrices C ("left distributivity"). 

It is important to note that commutativity does not generally hold; that is, given 
matrices A and B and their product defined, then generally AB ≠ BA.

Matrix Multiplication 

Properties 



Matrix Determinants



Matrix Transpose and 

Inverse
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7

5



Transformations

 2D transformations

• Translation

• Rotation

• Scaling

• Shear

• Matrix representation

• Homogeneous coordinates



• Object construction using assemblies/
hierarchy of parts; leaves contain 
primitives, nodes contain transformations.

How Are Geometric 
Transformations Used?

“is composed of hierarchy”

ROBOT transformation

upper body lower body

head trunk arm

stanchion base

Scenegraph



Lines and Polylines

2D Object Definition using Points

Convex : For every pair of points in the 

polygon, the line between them is fully 

contained in the polygon.

Convex vs. Concave Polygons

Concave (Not convex): some two points in 

the polygon are joined by a line not fully 

contained in the polygon.

• Lines drawn between ordered points to create 

more complex forms called polylines

• Same first and last point make closed polyline or polygon

• If it does not intersect itself, called simple polygon



Circle
• Consists of all points equidistant from one predetermined point 

(the center)

• (radius) r = c, where c is a constant

• In the Cartesian coordinates with center 
of circle at origin equation is 

r2 = x2 + y2

2D Object Definition

triangle square

rectangle

Special 
polygons

P0

P1
r

0

y

x

r



Circle as polygon
• Informally: a regular polygon with > 15 sides
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(Aligned) Ellipses

A circle scaled along the x or y axis

Example: height, on y-axis, remains 3, while length, on x-axis, changes from 3 to 6

2D Object Definition



• Component-wise addition of vectors v’ = v + t
• Translation of points in the (x,y) plane to a new position by 

adding translation amount to the coordinates of the point

x’ = x + dx

y’ = y + dy

2D Translation

tv



2D Translation
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v’ = v + t 

In Matrix form:



House shifts position relative to origin

dx = 2

dy = 3
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A translation by (0,0), i.e. no translation at all, gives us the identity matrix, as it should.

• To move polygons: just translate vertices (vectors) and then redraw 

lines between them

• Preserves lengths (isometric)

• Preserves angles (conformal)

2D Translation



• Component-wise 
scalar multiplication
of vectors

v’ = S·v

• Point can be scaled
(stretched) by sx
along the x axis 
and by sy along the 
y axis into new 
points by the 
multiplication:

2D Scaling

ysy

xsx

y

x
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'

'



2D Scaling
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In Matrix form:

v’ = S · v 



2D Scaling
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Note: House shifts position relative to origin

• Does not preserve lengths

• Does not preserve angles (except when scaling is

uniform)



Rotation of vectors through an angle q about the origin v’ = Rq · v

x’ = x cos q – y sin q

y’ = x sin q + y cos q

2D Rotation



v’ = Rq · v 








 


qq

qq
q

cossin
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R

In Matrix form:

Rθ – rotation Matrix

2D Rotation



• Suppose object is not centered at origin?

• Solution: move it to the origin, then scale and/or 
rotate, then move it back.

• Composition of the successive transformations

2D Rotation and Scale are 

Relative to Origin



• Translation, scaling and rotation are expressed as:

• Composition is difficult to express, since translation not expressed as 
a Matrix multiplication

• Homogeneous coordinates allow all transformations (translation, 
scaling and rotation) to be expressed homogeneously, allowing 
composition via multiplication by 3x3 matrices

Homogenous Coordinates

translation:

scale:

rotation:

v’ = v + t

v’ = S · v

v’ = R · v



Homogenous Coordinates
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Point is presented by a triple (x,y,w) or

Two sets of homogenious coordinates (x,y,w) and (x’,y’,w’) are presents 

the same point if and only if one a multiple of the other.                      

The same points by different coordinate triples: (2,3,7), (6,9,21);

















w

y

x



• P2d is intersection of line determined by Ph with the w = 1 plane

• So an infinite number of points correspond to (x, y, 1): they constitute 
the whole line (tx, ty, tw)

P2d (x/w, y/w, 1)

Ph (x, y, w)

y

x

w

1

• w is 1 for affine transformations in graphics

Homogenous Coordinates



• For points written in homogeneous coordinates

translation, scaling and rotation relative to the origin are expressed 

homogeneously as:

2D Homogeneous Coordinate
Transformations
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Matrix Compositions

HdydxTRdydxTHdydxTRHdydxTHHouse ),()(),(),()(),()( qq 

With the T Matrix, can avoid unwanted translation 

introduced when we scale or rotate an object not centered 

at origin: 

• translate the object to the origin

• perform the scale or rotate

• translate back.



Matrix Compositions

Rotate about a point P1

• Translate P1 to origin

• Rotate

• Translate back to P1

=



Scale object around point P1

• P1 to origin

• Scale

• Translate back to P1

• Compose into T

P’ = T · P :

Matrix Compositions



• Scale + rotate object around point P1 and move to P2

– P1 to origin

– Scale

– Rotate

– Translate to P2

Matrix Compositions



Multiple transformations in proper 

order:

P’ = T · P

P’ = ((T ·(R· (S · T))) · P)

P’ = (T· (R· (S· (T· P))))

Matrix Compositions



Transformations are 
NOT Commutative

y

x
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

y

x
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

Rotation → Translation

Translation → Rotation



2D Affine 

Transformations

All represented as Matrix operations on vectors

Parallel lines preserved, angles/ lengths not

• Scale

• Rotate

• Translate

• Reflect

• Shear

Pics/Math courtesy of Dave Mount @ UMD-CP



Matrix Representation of

2D Affine Transformations



2D Shear

Shear operation along y axis

Shear operation

– Preserves 

parallels

– Does not preserve

lengths and angles



• Take a scene and “skew” it to the side

• Squares become parallelograms - x coordinates skew to the right, while y 

coordinates stay the same

• 900 between axes becomes q

• Like taking a deck of cards and pushing top to the side – each card shifts relative 

to the one below it

• Notice that the base of the house (at y=1) remains horizontal, but shifts to the 

right…

Skew/Shear/Translate
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NB: A skew of 0 angle, i.e. no skew at all, gives us the identity Matrix, as it should



• Everything along the line y=1 stays on the line y=1, but is 

translated to the right

• Distance between points on this line is preserved

• A 1D homogeneous coordinate translation looks like a 2D skew 

transformation 
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Vertices in motion (“Generative object description”)

• Line is drawn by tracing path of a point as it moves (one dimensional entity)

• Square drawn by tracing vertices of a line as it moves perpendicularly to itself 

(two dimensional entity)

• Cube drawn by tracing paths of vertices of a square as it moves 

perpendicularly to itself (three-dimensional entity)

• Circle drawn by swinging a point at a fixed length around a center point

2D to 3D Object Definition



• Triangles and tri-meshes

• Often parametric polynomials, called splines

Building 3D Primitives

PatchesCurves

Boundaries are

Polynomial curves

In 3D



3D Transformations

 Affine 

transformations

- Translation

- Scaling

- Rotation

 Deformations

- Twisting

- Tapering

- Bending

 Set-theoretic 

operations

 Metamorphosis



Translation

Affine transformations



Coordinate-axes rotations

Affine transformations



Scaling

Affine transformations



Deformations



Images by A. Barr

Twisting
Deformations



Tapering
Deformations

Images by A. Barr



Images by A. Barr

Bending

Deformations



Set-theoretic operations



Metamorphosis



Can a constructive solid have an implicit surface?

Metamorphosis of implicit 

surfaces

bcg.qt.mov
bcg.qt.mov


• 3D scenes are typically stored in a directed acyclic graph 
(DAG) called a scene graph

– Open Scene Graph (used in the Cave)

– Sun’s Java3D™

– x3D ™ (ex VRML ™)

Transforms in Scene Graphs

• Typical scene graph format (there are hundreds of packages!)

– objects (cubes, sphere, cone, polyhedra etc.) with basic defaults (located at the 

origin within unit box) stored as nodes

– attributes (color, texture map, etc.) and transformations are also nodes in scene 

graph (labeled edges on slide 2 are an abstraction)



Transforms in Scene Graphs

ROBOT

upper body lower body

head trunk
arm

stanchion
base

1. Leaves of tree are standard size object primitives

2. We transform them

3. To make sub-groups

4. Transform subgroups

5. To get final scene

Scene graph



• In the scene graph below, transformation t0 will affect all 
objects, but t2 will only affect obj2 and one instance of 
group3 (which includes an instance of obj3 and obj4)

– t2 doesn’t affect obj1, other instance of group3

• Note that if you want to use multiple instances of a sub-tree, 
such as group3 above, you must define it before it’s used

– this is so that it’s easier to implement

object nodes (geometry)

transformation nodes

group nodes

group3

obj3 obj4

t5 t6

t4

root

t0

group1

t1 t2

obj1 group3

t3

group2

group3obj2

Transforms in Scene Graphs



• An example:

- for o1, CTM = m1

- for o2, CTM = m2* m3

- for o3, CTM = m2* m4* m5

- for a vertex v in o3, its position in the world (root) 
coordinate system is:

CTM v  = (m2*m4*m5)v

g: group nodes

m: matrices of the transform nodes

o: object nodes
m5

m1 m2

m3 m4

o1

o2

o3

g1

g2

g3

Transforms in Scene Graphs
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