Geometric Modeling

Geometric Transformations

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Contents

- Matrix operations
- 2D transformations
- 3D transformations
- Reference materials

Points representation

2D space
 $[x, y]$
 or
 $\left[\begin{array}{l}x \\ y\end{array}\right]$

Points in 2D and 3D spaces are represented as row or a column matrix. The object transformations are presented in matrix form.

Matrices and Matrix Operators

Matrix is a rectangular table of elements with rows and columns:

$$
A=\left(a_{i, j}\right)_{m \times n}
$$

(m, n - dimensions)

Matrix Operations:

\checkmark Addition/ Subtraction
\checkmark Identity
\checkmark Multiplication

$$
\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right] A=\left[\begin{array}{ccccc}
u_{11} & u_{12} & \ldots & \ldots & \ldots \\
u_{1 k} \\
u_{21} & u_{22} & \ldots & \ldots & \ldots \\
u_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right] \ldots .
$$

$$
\begin{aligned}
A+B & =B+A \\
A+(B+C) & =(A+B)+C \\
(c d) A & =c(d A) \\
1 A & =A \\
c(A+B) & =c A+c B \\
(c+d) A & =c A+d A
\end{aligned}
$$

Scalar multiplication

If a Matrix \boldsymbol{A} and a number \boldsymbol{c} are given, we may define the scalar multiplication $\boldsymbol{c A}$ by

$$
(c A)[i, j]=c A[i, j]
$$

$$
2\left[\begin{array}{ccc}
1 & 8 & -3 \\
4 & -2 & 5
\end{array}\right]=\left[\begin{array}{ccc}
2 \times 1 & 2 \times 8 & 2 \times-3 \\
2 \times 4 & 2 \times-2 & 2 \times 5
\end{array}\right]=\left[\begin{array}{ccc}
2 & 16 & -6 \\
8 & -4 & 10
\end{array}\right]
$$

Matrix Multiplication

- Multiplication of two matrices is well-defined only if the number of columns of the first matrix is the same as the number of rows of the second matrix.
- If A is an m-by- n matrix (m rows, n columns) and B is an n-by- p matrix (n rows, p columns), then their product $A B$ is the m-by- p matrix (m rows, p columns) given by

$$
\begin{aligned}
& (A B)[i, j]=A[i, 1] * B[1, j]+A[i, 2] * B[2, j]+\ldots+A[i, n] * \\
& B[n, j]
\end{aligned}
$$

for each pair i and j.

Matrix Multiplication

- It is easy to remember how to do this by imagining the first matrix as being built out of row vectors and the second matrix as being built out of (column) vectors:
$A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6}\end{array}\right]=\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$ and $\quad B=\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4} \\ b_{5} & b_{6}\end{array}\right]=\left[\begin{array}{ll}V_{3} & V_{4}\end{array}\right]$
Then $A \times B=\left[\begin{array}{cc}V_{1} V_{3} & V_{1} V_{7} \\ V_{2} V_{3} & V_{2} V_{4}\end{array}\right]$
where in each product above one multiplies a row vector by a column vector by multiplying the corresponding entries and adding up the results

Matrix Multiplication Properties

This multiplication has the following properties:

$$
(A B) C=A(B C)
$$

for all k-by- m matrices A, m-by- n matrices B and n-by- p matrices C ("associativity").

$$
(A+B) C=A C+B C
$$

for all m-by- n matrices A and B and n-by-k matrices C ("right distributivity").

$$
C(A+B)=C A+C B
$$

for all m-by- n matrices A and B and k-by- m matrices C ("left distributivity").
It is important to note that commutativity does not generally hold; that is, given matrices A and B and their product defined, then generally $A B \neq B A$.

Matrix Determinants

A single real number Computed recursively

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{1+i} A_{1 i}
$$

Example:

$$
\operatorname{det}\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=a d-b c
$$

Matrix Transpose and Inverse

$\begin{aligned} & \text { Matrix Transpose: } \\ & \text { Swap rows and cols: }\end{aligned} A=\left[\begin{array}{l}7 \\ 5\end{array}\right] A^{T}=\left[\begin{array}{ll}7 & 5\end{array}\right]$

$$
\begin{aligned}
\left(A^{T}\right)^{T} & =A \\
(A+B)^{T} & =A^{T}+B^{T} \\
(c A)^{T} & =c\left(A^{T}\right) \\
(A B)^{T} & =B^{T} A^{T}
\end{aligned}
$$

Matrix Inverse: Given A, find B such that

$$
A B=B A=I
$$

Transformations

2D transformations

- Translation
- Rotation
- Scaling
- Shear
- Matrix representation
- Homogeneous coordinates

How Are Geometric Transformations Used?

- Object construction using assemblies/ hierarchy of parts; leaves contain primitives, nodes contain transformations.

2D Object Definition using Points

Lines and Polylines

- Lines drawn between ordered points to create more complex forms called polylines
- Same first and last point make closed polyline or polygon
- If it does not intersect itself, called simple polygon

Convex vs. Concave Polygons

Convex : For every pair of points in the polygon, the line between them is fully contained in the polygon.

Concave (Not convex): some two points in the polygon are joined by a line not fully contained in the polygon.

2D Object Definition

Special polygons

Circle

- Consists of all points equidistant from one predetermined point (the center)
- (radius) $r=c$, where c is a constant
- In the Cartesian coordinates with center of circle at origin equation is

$$
r^{2}=x^{2}+y^{2}
$$

2D Object Definition

Circle as polygon

- Informally: a regular polygon with > 15 sides

(Aligned) Ellipses

A circle scaled along the x or y axis

Example: height, on y-axis, remains 3 , while length, on x-axis, changes from 3 to 6

2D Translation

- Component-wise addition of vectors $\mathbf{V}^{\mathbf{y}}=\mathbf{v}+\mathbf{t}$
- Translation of points in the (x, y) plane to a new position by adding translation amount to the coordinates of the point

$$
\begin{aligned}
& x^{\prime}=x+d x \\
& y^{\prime}=y+d y
\end{aligned}
$$

In Matrix form:

$$
v=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad v^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right], \quad t=\left[\begin{array}{l}
d x \\
d y
\end{array}\right]
$$

$$
\begin{array}{|l|l}
V^{\prime}=v+t
\end{array} \rightarrow\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
$$

2D Translation

- To move polygons: just translate vertices (vectors) and then redraw lines between them
- Preserves lengths (isometric)
- Preserves angles (conformal)

House shifts position relative to origin
A translation by $(0,0)$, i.e. no translation at all, gives us the identity matrix, as it should.

2D Scaling

- Component-wise scalar multiplication of vectors

$$
v^{\prime}=S \cdot v
$$

- Point can be scaled (stretched) by s_{x} along the x axis and by s_{y} along the y axis into new points by the multiplication:

$$
\begin{aligned}
& x^{\prime}=s_{x} x \\
& y^{\prime}=s_{y} y
\end{aligned}
$$

2D Scaling

In Matrix form:

$$
v=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad v^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad S=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

$$
\boldsymbol{V}^{\prime}=\boldsymbol{S} \cdot \boldsymbol{V} \rightarrow\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Does not preserve lengths
- Does not preserve angles (except when scaling is uniform)

$$
\begin{aligned}
& s_{x}=3 \\
& s_{y}=2
\end{aligned}
$$

Note: House shifts position relative to origin

2D Rotation

Rotation of vectors through an angle θ about the origin $V^{\prime}=R_{\theta} \cdot V$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta
\end{aligned}
$$

2D Rotation

In Matrix form:

$$
v=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad v^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad \boldsymbol{R}_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$\mathrm{R}_{\theta}-$ rotation Matrix

$$
v^{\prime}=R_{\theta} \cdot v
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Rotation and Scale are Relative to Origin

- Suppose object is not centered at origin?
- Solution: move it to the origin, then scale and/or rotate, then move it back.

- Composition of the successive transformations

Homogenous Coordinates

- Translation, scaling and rotation are expressed as:
translation:
scale:
rotation:

$$
v^{\prime}=v+t
$$

$$
v^{\prime}=S \cdot v
$$

$$
v^{\prime}=R \cdot v
$$

- Composition is difficult to express, since translation not expressed as a Matrix multiplication
- Homogeneous coordinates allow all transformations (translation, scaling and rotation) to be expressed homogeneously, allowing composition via multiplication by 3×3 matrices

Homogenous Coordinates

Point is presented by a triple (x, y, w) or

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Two sets of homogenious coordinates (x, y, w) and ($x^{\prime}, y^{\prime}, w^{\prime}$) are presents the same point if and only if one a multiple of the other.

The same points by different coordinate triples: $(2,3,7),(6,9,21)$;

$$
\begin{gathered}
P_{2 d}(x, y) \rightarrow P_{h}(w x, w y, w), \quad w \neq 0 \\
P_{h}\left(x^{\prime}, y^{\prime}, w\right), \quad w \neq 0 \\
P_{2 d}(x, y)=P_{2 d}\left(\frac{x^{\prime}}{w}, \frac{y^{\prime}}{w}\right)
\end{gathered}
$$

Homogenous Coordinates

- w is 1 for affine transformations in graphics
- $P_{2 d}$ is intersection of line determined by P_{h} with the $w=1$ plane

- So an infinite number of points correspond to ($x, y, 1$): they constitute the whole line ($t x, t y, t w$)

2D Homogeneous Coordinate Transformations

- For points written in homogeneous coordinates

translation, scaling and rotation relative to the origin are expressed homogeneously as:
$T(d x, d y)=\left[\begin{array}{ccc}1 & 0 & d x \\ 0 & 1 & d y \\ 0 & 0 & 1\end{array}\right] ; \quad v^{\prime}=T(d x, d y) v$

$$
S\left(s_{x}, s_{y}\right)=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] ; \quad v^{\prime}=S\left(s_{x}, s_{y}\right) v
$$

$$
R(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] ; \quad v^{\prime}=R(\phi) v
$$

Matrix Compositions

With the T Matrix, can avoid unwanted translation

 introduced when we scale or rotate an object not centered at origin:- translate the object to the origin
- perform the scale or rotate
- translate back.

Matrix Compositions

Rotate about a point $P 1$

- Translate P1 to origin
- Rotate
- Translate back to P1

$$
\begin{aligned}
& T\left(x_{1}, y_{1}\right) \cdot R(\theta) \cdot T\left(-x_{1},-y_{1}\right)= \\
& =\left[\begin{array}{ccc}
1 & 0 & x_{1} \\
0 & 1 & y_{1} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{1} \\
0 & 1 & -y_{1} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x_{1}(1-\cos \theta)+y_{1} \sin \theta \\
\sin \theta & \cos \theta & y_{1}(1-\cos \theta)-x_{1} \sin \theta \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Matrix Compositions

Scale object around point P1

- P1 to origin
- Scale
- Translate back to P1
- Compose into T

$$
\begin{aligned}
P^{\prime}=T \cdot P: & =\left[\begin{array}{ccc}
1 & 0 & x_{1} \\
0 & 1 & y_{1} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{1} \\
0 & 1 & -y_{1} \\
0 & 0 & 1
\end{array}\right] \\
= & {\left[\begin{array}{ccc}
S_{x} & 0 & x_{1}\left(1-S_{x}\right) \\
0 & S_{y} & y_{1}\left(1-S_{y}\right) \\
0 & 0 & 1
\end{array}\right] }
\end{aligned}
$$

Matrix Compositions

- Scale + rotate object around point P1 and move to P2
- P1 to origin
- Scale
- Rotate
- Translate to P2

$$
T\left(x_{2}, y_{2}\right) \cdot R(\theta) \cdot S\left(s_{x}, s_{y}\right) \cdot T\left(-x_{1},-y_{1}\right)
$$

Original house

Translate P_{1} to origin

Scale

Rotate

Translate to final position P_{2}

Matrix Compositions

Multiple transformations in proper order:
$P^{\prime}=T \cdot P$
$P^{\prime}=((T \cdot(R \cdot(S \cdot T))) \cdot P)$
$P^{\prime}=(T \cdot(R \cdot(S \cdot(T \cdot P))))$

Transformations are NOT Commutative

2D Affine

Transformations

All represented as Matrix operations on vectors Parallel lines preserved, angles/ lengths not

- Scale
- Rotate
- Translate
- Reflect
- Shear

Rotation

Translation

Uniform Nonuniform Scaling Scaling

Matrix Representation of 2D Affine Transformations

Translation: $\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & d_{x} \\ 0 & 1 & d_{y} \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Scale: $\quad\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Rotation: $\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Shear:

$$
S H_{x}=\left[\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { Reflection: } F_{y}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2D Shear

$$
\begin{gathered}
\mathrm{p}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\mathbf{p}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
x+a y \\
y
\end{array}\right]
\end{gathered}
$$

Shear operation along y axis

$$
S h_{y}(b)=\left[\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right]
$$

Shear operation

$$
S h_{x}(a)=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]
$$

$$
\mathbf{p}^{\prime}=S h_{x}(a) \mathbf{p}
$$

- Preserves

parallels

- Does not preserve lengths and angles

Skew/Shear/Translate

- Take a scene and "skew" it to the side

$$
\operatorname{Sked}_{\theta}=\left[\begin{array}{cc}
1 & \frac{1}{\tan \theta} \\
0 & 1
\end{array}\right]
$$

- Squares become parallelograms - x coordinates skew to the right, while y coordinates stay the same
- 90° between axes becomes θ
- Like taking a deck of cards and pushing top to the side - each card shifts relative to the one below it
- Notice that the base of the house (at $\mathrm{y}=1$) remains horizontal, but shifts to the right...

NB: A skew of 0 angle, i.e. no skew at all, gives us the identity Matrix, as it should

Skew/Shear/Translate

- Everything along the line $y=1$ stays on the line $y=1$, but is translated to the right
- Distance between points on this line is preserved
- A 1D homogeneous coordinate translation looks like a 2D skew transformation

$$
\left[\begin{array}{cc}
1 & \frac{1}{\tan \theta} \\
0 & 1
\end{array}\right] \equiv\left[\begin{array}{cc}
1 & d x \\
0 & 1
\end{array}\right]
$$

$$
T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

2D to 3D Object Definition

Vertices in motion ("Generative object description")

- Line is drawn by tracing path of a point as it moves (one dimensional entity)
- Square drawn by tracing vertices of a line as it moves perpendicularly to itself (two dimensional entity)

- Cube drawn by tracing paths of vertices of a square as it moves perpendicularly to itself (three-dimensional entity)
- Circle drawn by swinging a point at a fixed length around a center point

Building 3D Primitives

- Often parametric polynomials, called splines

3D Transformations

* Affine
transformations
- Translation
- Scaling
- Rotation
* Deformations
- Twisting
- Tapering
- Bending

* Set-theoretic operations

* Metamorphosis

Affine transformations

Translation

$$
\begin{aligned}
& x^{\prime}=x+t_{x \prime} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

In a three-dimensional homogeneous coordinate representation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Affine transformations

Coordinate-axes rotations

$$
\begin{array}{ll}
z \text {-axis rotation } & x^{\prime}=x \cos \theta-y \sin \theta \\
y^{\prime}=x \sin \theta+y \cos \theta \\
z^{\prime}=z
\end{array}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

x-axis rotation $\quad y^{\prime}=y \cos \theta-z \sin \theta$

$$
z^{\prime}=y \sin \theta+z \cos \theta
$$

$$
x^{\prime}=x
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Affine transformations

Scaling

$$
\begin{gathered}
x^{\prime}=x \cdot s_{x \prime} \\
y^{\prime}=y \cdot s_{y} \\
z^{\prime}=z \cdot s_{z} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{gathered}
$$

Scaling with respect to a selected fixed position $\left(x_{f}, y_{f}, z_{f}\right)$ can be represented with the following transformation sequence:

1. Translate the fixed point to the origin
2. Scale the object relative to the coordinate origin
-3. Translate the fixed point back to its original position

Defornaztions

($\mathrm{x}, \mathrm{y}, \mathrm{z}$) - original point
(X,Y,Z) - point of a deformed object

Forward mapping

For polygonal and parametric forms

$$
\begin{gathered}
\Phi:(\mathbf{x}, \mathbf{y}, \mathbf{z})->(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \text { or } \\
(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\left(\phi_{1}(\mathbf{x}, \mathbf{y}, \mathrm{z}), \phi_{2}(\mathbf{x}, \mathbf{y}, \mathbf{z}), \phi_{3}(\mathrm{x}, \mathrm{y}, \mathrm{z})\right)
\end{gathered}
$$

Inverse mapping

For implicit form

$$
\begin{gathered}
\Phi^{-1}:(\mathbf{X}, \mathbf{Y}, \mathbf{Z})->(\mathbf{x}, \mathbf{y}, \mathbf{z}) \text { or } \\
(\mathbf{x}, \mathbf{y}, \mathbf{Z})=\left(\phi_{1}^{-1}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}), \phi_{2}^{-1}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}), \phi_{3}^{-1}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})\right)
\end{gathered}
$$

Deformations

Twisting

Forward mapping

$$
\begin{aligned}
\theta & =f(z) & & X=x C_{\theta}-y S_{\theta} \\
C_{\theta} & =\cos (\theta) & & Y=x S_{\theta}+y C_{\theta} \\
S_{\theta} & =\sin (\theta) & & Z=z .
\end{aligned}
$$

Inverse mapping

$$
\begin{aligned}
& \theta=f(Z), \\
& x=X C_{\theta}+Y S_{\theta}, \\
& y=-X S_{\theta}+Y C_{\theta}, \\
& z=Z
\end{aligned}
$$

Deformations

Tapering

Forward mapping

$$
\begin{aligned}
r & =f(z) \\
X & =r x \\
Y & =r y \\
Z & =z
\end{aligned}
$$

Inverse mapping

$$
\begin{aligned}
r(Z) & =f(Z), \\
x & =X / r, \\
y & =Y / r, \\
z & =Z
\end{aligned}
$$

Deformations

Bending

a Bent, Twisted, Tapered Primitive

Set-theoretic operations

A Venn diagram showing the operators of set-theory

$A \cup B$

$A \cap B$

$A \backslash B$

$B \backslash A$

Metamorphosis

Metamorphosis (morphing, warping, shape transformation) changes a geometric object from one given shape to another.

Polygonal objects

Two steps: 1) search for correspondence between points;
2) interpolation between two surfaces.

Problems: • different number of points in two objects;

- constant topology (for example, how to transform a sphere in three intersecting tori?);
- possible self-intersections.

Implicit form

Metamorphosis is defined as a transformation between two functions. The simplest form is

$$
\mathbf{f}_{3}(\mathbf{X})=\mathbf{f}_{1}(\mathbf{X})(1-\mathbf{t})+\mathrm{f}_{2}(\mathbf{X}) \mathbf{t},
$$

where $0 \leq t \leq 1$.

Metamorphosis of implicit surfaces

Can a constructive solid have an implicit surface?

Transforms in Scene Graphs

- 3D scenes are typically stored in a directed acyclic graph (DAG) called a scene graph
- Open Scene Graph (used in the Cave)
- Sun's Java3D™
- x3D ${ }^{\text {TM }}$ (ex VRML ${ }^{\text {TM }}$)
- Typical scene graph format (there are hundreds of packages!)
- objects (cubes, sphere, cone, polyhedra etc.) with basic defaults (located at the origin within unit box) stored as nodes
- attributes (color, texture map, etc.) and transformations are also nodes in scene graph (labeled edges on slide 2 are an abstraction)

Transforms in Scene Graphs

1. Leaves of tree are standard size object primitives

Transforms in Scene Graphs

- In the scene graph below, transformation t0 will affect all objects, but t2 will only affect obj2 and one instance of group3 (which includes an instance of obj3 and obj4)
- t2 doesn't affect obj1, other instance of group3

- Note that if you want to use multiple instances of a sub-tree, such as group3 above, you must define it before it's used
- this is so that it's easier to implement
- An example:

- for o1, CTM = m1
- for o2, CTM = m2* m3
- for o3, CTM $=\mathrm{m} 2^{*} \mathrm{~m} 4^{*} \mathrm{~m} 5$
- for a vertex v in 03 , its position in the world (root) coordinate system is:
CTM $v=\left(m 2^{*} m 4^{*} m 5\right) v$

References

- James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics: Principles and Practice (2nd Edition in C), AddisonWesley, Reading, MA, 1997.

Computer Graphics

PRINCIPLES AND PRACTICE

Foley • van Dam • Feiner • Hughes

THE SYSTEMS PROGRAMMING SERIES

References

Hearn Donald, Baker M.P., Computer Graphics, New York, Prentice Hall, 2nd Edition, 1994.

COMPUTER GRAPHICS

References

- I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Muehlig, H. Mühlig, Handbook of Mathematics, Springer, 2003
- MathWorld, 2006 http://mathworld.wolfram.com
- Wikipedia, 2006 http://en.wikipedia.org/wiki

