o)
=
[
©

@)
=
O

 _—
e

D

-

@)

)
O

Geometric

Contents

e Matrix operations

o 2D transformations
e 3D transformations
 Reference materials

Points representation

2D space 3D space
[x V] X, Y, Z]
or oL
- - -

% iy

Matrices and Matrix

Operators
Matrix Is a rectangular - o s o e
table of elements with " by Ugy oo oo o ity
rows and columns: | A=
A — (al,J) mxn | T "
(m, n — dimensions) A+B=B+A
A+(B+C)=(A+B)+C
Matrix Operations: (cd)A = c(dA)
. - 1A= A

c(A+B)=cA+cB
(c+d)A=cA+dA

Scalar multiplication

If a Matrix A and a number c are given, we may define
the scalar multiplication CA by

CA)[1L)]=cAllL]]

-l v

4 -2 3 2x4 2x -2 2x5H 8 —4 10

Matrix Multiplication

« Multiplication of two matrices is well-defined only
If the number of columns of the first matrix is the
same as the number of rows of the second
matrix.

* If Ais an m-by-n matrix (m rows, n columns) and
B Is an n-by-p matrix (n rows, p columns), then
their product AB Is the m-by-p matrix (m rows, p
columns) given by

(AB)Ii, i1 = Ali, 1] * B[1,] + A[i, 2] * B[2,] + ... + A[i, n] *
B[n, J]

for each pair i and |.

Matrix Multiplication

 Itis easy to remember how to do this by imagining the
first matrix as being built out of row vectors and the
second matrix as being built out of (column) vectors:

ay fy d 1] b by
T L sl] IR Y [I
y s g 13 by by

where in each product above one multiplies a row vector

by a column vector by multiplying the corresponding
entries and adding up the results

Matrix Multiplication
Properties

This multiplication has the following properties:
(AB)C = A(BC)

for all k-by-m matrices A, m-by-n matrices B and n-by-p matrices C
("associativity").

(A + B)C = AC + BC

for all m-by-n matrices A and B and n-by-k matrices C ("right distributivity").
CA+B)=CA+CB

for all m-by-n matrices A and B and k-by-m matrices C (“left distributivity").

It is important to note that commutativity does not generally hold; that is, given
matrices A and B and their product defined, then generally AB # BA.

A single real number

Computed recursively
Example:

a e
det = o = bt
b 4

Inverse
Matrix Transpose: 4 _ 7 AT
Swap rows and cols: 5
(AT =4
(A+B)!' =47+ BT
(cA)T = ¢(AT)
(AB)' = BT AT

Matrix Transpose and

|75 |

Matrix Inverse: Given A4, find B such that
AB=BA=1

Transformations

s 2D transformations
* Translation

e Rotation

» Scaling

e Shear

How Are Geometric
Transformations Used?

* ODbject construction using assemblies/
hierarchy of parts; leaves contain
primitives, nodes contain transformations.

“is composed of hierarchy”

ROBOT / transformation

upper body lower body

S

’_‘:} 2D Object Definition using Points

Lines and Polylines

« Lines drawn between ordered points to create
more complex forms called polylines

» Same first and last point make closed polyline or polygon
 |f it does not intersect itself, called simple polygon

Convex vs. Concave Polygons

Convex : For every pair of points in the
polygon, the line between them is fully
contained in the polygon.

Concave (Not convex): some two points in
the polygon are joined by a line not fully
contained in the polygon.

2D Object Definition

Special
polygons /\

triangle square

_ rectangle
Circle

« Consists of all points equidistant from one predetermined point
(the center)

« (radius) r = c, where c is a constant

2D Object Definition

Circle as polygon

Informally: a regular polygon with > 15 sides

INSISTAIATS

(Aligned) Ellipses

A circle scaled along the x or y axis

G
ﬁ "‘ﬁeﬂ
I

_‘""3 2D Translation

« Component-wise addition of vectors V' =V + t

« Translation of points in the (x,y) plane to a new position by
adding translation amount to the coordinates of the point

X =X+ dx
y =ytay

Before translation After translation

2D Translation

2D Translation

« To move polygons: just translate vertices (vectors) and then redraw
lines between them

* Preserves lengths (isometric)

* Preserves angles (conformal)

2D Scaling

« Component-wise

scalar multiplication | ,
of vectors

v =S-v

 Point can be scaled

- - 'qq:

: 5
L (2} d_}
.

| I
After scaling

-

X

(stretched) by s,
along the x axis
and by s, along the
y axis into new
points by the
multiplication:

2D Scaling

2D Scaling

* Does not preserve lengths
* Does not preserve angles (except when scaling Is
uniform)

2D Rotation

Rotation of vectors through an angle 6 about the origin v = Rg 'V

X’=Xcos d—ysin g
y’=xsin 8+ycos 6

¥ Y

& 'y

: L: (4.9, 7.8)

L - (2.1, 4.9)

_ (5.2) 9, 2) B

T A T N w1 N PO (O 1 I 1 O (oo
Before rotation After rotation

2D Rotation

sin @ cos @

' cos@ —sin @]
'sSin@ cosf
] cos O —sin® | |z

2D Rotation and Scale are
Relative to Origin

« Suppose object is not centered at origin?

« Solution: move it to the origin, then scale and/or
rotate, then move it back.

F 3
Y T

Homogenous Coordinates

« Translation, scaling and rotation are expressed as:

translation: v =vy+t

scale: v'=8"-v

rotation: v =R -V

Homogenous Coordinates

X

y
w

Two sets of homogenious coordinates (Xx,y,w) and (x’,y’,w’) are presents
the same point if and only if one a multiple of the other.

Point is presented by a triple (x,y,w) or

The same points by different coordinate triples: (2,3,7), (6,9,21);

P, (X,y) > P (wx,wy,w), w=0

Homogenous Coordinates

« w is 1 for affine transformations in graphics

* P,4Is intersection of line determined by P,, with the w = 1 plane

//P; (X, Y, W)

17§4 ‘{d(xlw, yiw, 1)

.
’
’
-’

w

A

v

2D Homogeneous Coordinate

Transformations
* For points written in homogeneous coordinates X
Y |
1

translation, scaling and rotation relative to the origin are expressed
homogeneously as:

1 0 dx s 0 0
T(dx,dy)=|0 1 dy; v'=T(dx,dyy S(sx,sy){o 5 0} v=S5(s,.5, W
0 1

0 0 1

cos¢ -—sing 0
R(g¢)=|sing cos¢ O]

Matrix Compositions

With the T Matrix, can avoid unwanted translation
Introduced when we scale or rotate an object not centered
at origin:

« translate the object to the origin
« perform the scale or rotate

* translate back.

Matrix Compositions

Rotate about a point P1 |~ @13) - £(O) - T(=z1, =) =

Translate P1 to origin {1 0 =] {me —sin § n] [1 0]
= 01 3¢ |-| snd cosd D 01 —p
00 1 00 1
. ROtate [cos @ —sin 0 x1(1—cos 8)+y1sin 6]
== sinf@ cos r? y1(1 —cos 8) — z,15in B

0 1

Translate back to P1

<
=
-
e

&

" X
QOriginal house After translation After rotation After translation
of P, to origin to original P,

Matrix Compositions

Scale object around point P1
« P1to origin

e Scale

« Translate back to P1

« Compose into T

Matrix Compositions

» Scale + rotate object around point P1 and move to P2

— P1 to origin

— Scale

— Rotate

— Translate to P2

F, 2:
——— E— < L
Original Translate P, Scale Rotate Translate to
house to origin final position P,

Matrix Compositions

Multiple transformations in proper
order:

P'=T: P
P =(T-(R(S5-T))P)

Transformations are
NOT Commutative

I I I I I I I I I L~
2 3 4 5 6 7 8 9 10 X

Translation — Rotation

2D Affine
Transformations

All represented as Matrix operations on vectors
Parallel lines preserved, angles/ lengths not

e Scale Q

 Rotate

l l | | |
* Translate| . = — — :
Reflect | / ;L > /7
 Shear

Rotation Translation Uniform Nonuniform Reflection Shearing
Scaling Scaling

Pics/Math courtesy of Dave Mount @ UMD-CP

Matrix Representation of
2D Affine Transformations

Translation: [2] [1 0 d] [z]
y | =101 dy |]|y
1] |00 1| |1
s] s, 0 0 |
Scale: y |=]0 s 0] -]y
1 0 0 1 1
. 7] [cos @ —sinf 0 T
Rotation: V| = | sing coso 0)
1 | o 0 1 1

Shear: i | Reflection: Fyz_

2D Shear

] Shear operation

i=ly =

Shear operation along y axis

Shm(a)=[é f{’]

p' = Shx(a)p

o 1

Take a scene and “skew” it to the side 1
Ske@, = |:1 tan 9}

Squares become parallelograms - x coordinates skew to the right, while y
coordinates stay the same

909 between axes becomes 0

Like taking a deck of cards and pushing top to the side — each card shifts relative
to the one below it

Notice that the base of the house (at y=1) remains horizontal, but shifts to the
right...

Skew/Shear/Translate

« Everything along the line y=1 stays on the line y=1, but is
translated to the right

» Distance between points on this line is preserved

A 1D homogeneous coordinate translation looks like a 2D skew

transformation 1
a1 = |:1 dX:|
tan @ | =

1 1 _ :
T = original y-axis
[O 1] /

Vertices In motion (“Generative object description”)
« Line is drawn by tracing path of a point as it moves (one dimensional entity)

« Square drawn by tracing vertices of a line as it moves perpendicularly to itself
(two dimensional entity)

 Triangles and tri-meshes

y

« Often parametric polynomials, called splines

Curves . 3) Patches

(%, v, 2)

Boundaries are ™
Polynomial curves
In3D g

- 3D Transformations

< Affine < Set-theoretic
transformations operations
- Translation :
- Scaling * Metamorphosis
- Rotation

s+ Deformations

Affine transformations

Translation

y axis r "= x + ij
y' =y Tt
.{x'r yjrzl:’

{x,y,zlo’/ T=(t,t,t)

xr tyr bz

/ \ In a three-dimensional homogeneous

_ coordinate representation
X axis

z'=z+1,

Z axis

H'l"‘i-

o = O O
s
Ll N

-\
(=
¥
I
|
|
L T e [e T
o O o= O
P—'-Nﬂ‘
|
|
|

Affine transformations

y 4 z-axis rotation X =xcosf —ysind

y =xsinf + ycosh

zZ'=z

z x| [cos6 —sing O O x
y | | sin@ cosf 0 O Y
z | | o 0o 1 0 z
1 _ 0 0 0 1.1 L1
y | x—a_xis rotation Yy =ycosf —zsin @

z =ysinf + zcosb

X =x

h

[x| 1 0 0
0 cosf —sind
0 sinf cos@

| 0 0 0 N I

— N R
Il

= O O O

Lol & B~

Affine transformations

Scaling

X =x-5s,

Y =Y Sy

z'=z-5,
x s, 0 0 0 x
¥y 1_10 s 00 U}
z’ 0 0 s, O z
1 a 0 0 1 1

Scaling with respect to a selected fixed position (x;, ¥, zf) can be represented
with the following transformation sequence:

1. Translate the fixed point to the origin
- 2. Scale the object relative to the coordinate origin
(3. Translate the fixed point back to its original position

T(xf, yf, zf) ’ S(Sx: SE’ sz)) T(_xff _yf"' Hzf) =

Deformations

(x,y,z) - original point
(X,Y,Z) - point of a deformed object

Forward magping

For polygonal and parametric forms
d: (x,y,2z) > (X,Y,Z) or
(XY, Z) = (¢,(%,Y,2), §,(X,Y,2), §,(X,Y,2))

Inverse mapging

For implicit form
o1 (X)Y, Z) -> (x,y,z) or
x,¥,2) = (67,(X,Y, Z), $7,(X)Y, Z), o, (X,Y, Z))

Deformations

§ = f(2) X = zCy — ¢S,
Comcosll) ¥ =zS5+y0s ___ e
Sg = 8371(9) Z == 2.
Inverse mapg'ng
0 = f(Z),
z == XC&' -+ YS{;,
y=—XSp+YC,,
z2=2

Tapering

Deformations

Forward map Eing

Inverse ma

r = f(z),
X =res
= ry,
iy

11

Tronsformotiomw._

« -

—‘!l-ﬂ

TAFPETS

- -

~"-ﬂ

Transformation —

Transformation TAPERS

the

reg.on

Transformation TAPERS

the

reg.on

1]

ALY

ML
AT

AT

VAT
WU

maae<s bv A Rarr

Deformations

uoibul By m@nw.

Transformation

®

Transformatio™

Transformalon

Transformalio™

a Bent, Twisted, Tapered Primitive

Images by A. Barr

Union AU B Intersection AN B Difference A}\ B

A Venn diagram showing the operators of set-theory

N

“\ !

A e ot
51—
EL BN v
i B
\ s,

Metamorphosis

Metamorphosis (morphing, warping, shape transformation) changes
a geometric object from one given shape to another.

Polygonal objects

Two steps: 1) search for correspondence between points;
2) interpolation between two surfaces.

Problems: < different number of points in two objects;
» constant topology (for example, how to
transform a sphere in three intersecting tori?);
» possible self-intersections.

Implicit form

Metamorphosis is defined as a transformation between two functions.
The simplest form is

£,X) =X d-) +£,X) t,

where O <t < 1.

Metamorphosis of implicit
surfaces

Can a constructive solid have an implicit surface?

bcg.qt.mov
bcg.qt.mov

. Transforms in Scene Graphs

« 3D scenes are typically stored in a directed acyclic graph
(DAG) called a scene graph

— Open Scene Graph (used in the Cave)
— Sun’s Java3D™
— x3D ™ (ex VRML ™)

« Typical scene graph format (there are hundreds of packages!)

— objects (cubes, sphere, cone, polyhedra etc.) with basic defaults (located at the
origin within unit box) stored as nodes

— attributes (color, texture map, etc.) and transformations are also nodes in scene
graph (labeled edges on slide 2 are an abstraction)

Transforms in Scene Graphs

ﬁo get final scene ‘\ . SCe ne g rap h

4. Transform subgroups

/ :
— ——)
3.To makeK sub-groups N HibepRo0y ey

2. We transform them B O

Transforms in Scene Graphs

* Inthe scene graph below, transformation tO will affect all
objects, but t2 will only affect obj2 and one instance of
group3 (which includes an instance of obj3 and obj4)

— t2 doesn'’t affect obj1, other instance of group3

group3
t5 t6

obj4

object nodes (geometry)
3k transformation nodes
@ group nodes

obj2 group3

* Note that if you want to use multiple instances of a sub-tree,
such as group3 above, you must define it before it's used
— this is so that it's easier to implement

Transforms in Scene Graphs

« An example:

ol
g: group nodes

m: matrices of the transform nodes

0: object nodes

-forol, CTM =ml

References

« James D. Foley,
Andries van Dam,
Steven K. Feiner, John
F. Hughes, Computer
Graphics: Principles
and Practice (2nd
Edition in C), Addison-
Wesley, Reading, MA,
1997.

Computer Graphics

PRINCIPLES AND PRACTICE

Foley ¢« van Dam « Feiner « Hughes

SECOND EDITION in (C

THE SYSTEMS PROGRAMMING SERIES

References

Hearn Donald, Baker
M.P., Computer
Graphics, New York,
Prentice Hall, 2nd
Edition, 1994.

COMPUTER
GRAPHICS

(\ll\l()r\

DO\IALD H[\Pf\ M. PAULNE BAKER

References

* |.N. Bronshtein, K.A. Semendyayev, G.
Musiol, H. Muehlig, H. Muhlig, Handbook
of Mathematics, Springer, 2003

« MathWorld, 2006
http://mathworld.wolfram.com

» Wikipedia, 2006
http://en.wikipedia.org/wiki

http://mathworld.wolfram.com/
http://en.wikipedia.org/wiki

