
Geometric Modeling

Geometric
Transformations

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Contents

• Matrix operations

• 2D transformations

• 3D transformations

• Reference materials

Points representation

Points in 2D and 3D spaces are represented as row
or a column matrix. The object transformations are
presented in matrix form.

2D space

[x, y]

or

3D space

[x, y, z]

or

z

Matrices and Matrix

Operators

Matrix is a rectangular

table of elements with

rows and columns:

A = (ai,j) mn

(m, n – dimensions)

Matrix Operations:

Addition/ Subtraction

 Identity

Multiplication

u11 u12………u1k

u21 u22………u2k

………………….

un1 un2………..unk

Scalar multiplication

If a Matrix A and a number c are given, we may define

the scalar multiplication cA by

(c A) [i, j] = c A [i, j]

Matrix Multiplication

• Multiplication of two matrices is well-defined only
if the number of columns of the first matrix is the
same as the number of rows of the second
matrix.

• If A is an m-by-n matrix (m rows, n columns) and
B is an n-by-p matrix (n rows, p columns), then
their product AB is the m-by-p matrix (m rows, p
columns) given by

(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] *

B[n, j]

for each pair i and j.

Matrix Multiplication

• It is easy to remember how to do this by imagining the

first matrix as being built out of row vectors and the

second matrix as being built out of (column) vectors:

and

Then

where in each product above one multiplies a row vector

by a column vector by multiplying the corresponding

entries and adding up the results

This multiplication has the following properties:

(AB)C = A(BC)

for all k-by-m matrices A, m-by-n matrices B and n-by-p matrices C
("associativity").

(A + B)C = AC + BC

for all m-by-n matrices A and B and n-by-k matrices C ("right distributivity").

C(A + B) = CA + CB

for all m-by-n matrices A and B and k-by-m matrices C ("left distributivity").

It is important to note that commutativity does not generally hold; that is, given
matrices A and B and their product defined, then generally AB ≠ BA.

Matrix Multiplication

Properties

Matrix Determinants

Matrix Transpose and

Inverse

7 5
7

5

Transformations

 2D transformations

• Translation

• Rotation

• Scaling

• Shear

• Matrix representation

• Homogeneous coordinates

• Object construction using assemblies/
hierarchy of parts; leaves contain
primitives, nodes contain transformations.

How Are Geometric
Transformations Used?

“is composed of hierarchy”

ROBOT transformation

upper body lower body

head trunk arm

stanchion base

Scenegraph

Lines and Polylines

2D Object Definition using Points

Convex : For every pair of points in the

polygon, the line between them is fully

contained in the polygon.

Convex vs. Concave Polygons

Concave (Not convex): some two points in

the polygon are joined by a line not fully

contained in the polygon.

• Lines drawn between ordered points to create

more complex forms called polylines

• Same first and last point make closed polyline or polygon

• If it does not intersect itself, called simple polygon

Circle
• Consists of all points equidistant from one predetermined point

(the center)

• (radius) r = c, where c is a constant

• In the Cartesian coordinates with center
of circle at origin equation is

r2 = x2 + y2

2D Object Definition

triangle square

rectangle

Special
polygons

P0

P1
r

0

y

x

r

Circle as polygon
• Informally: a regular polygon with > 15 sides

0
1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

0
1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(Aligned) Ellipses

A circle scaled along the x or y axis

Example: height, on y-axis, remains 3, while length, on x-axis, changes from 3 to 6

2D Object Definition

• Component-wise addition of vectors v’ = v + t
• Translation of points in the (x,y) plane to a new position by

adding translation amount to the coordinates of the point

x’ = x + dx

y’ = y + dy

2D Translation

tv

2D Translation





























dy

dx
t

y

x
v

y

x
v ,

'

'
',

v’ = v + t 

In Matrix form:

House shifts position relative to origin

dx = 2

dy = 3

y

x
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6










1

2










4

4

A translation by (0,0), i.e. no translation at all, gives us the identity matrix, as it should.

• To move polygons: just translate vertices (vectors) and then redraw

lines between them

• Preserves lengths (isometric)

• Preserves angles (conformal)

2D Translation

• Component-wise
scalar multiplication
of vectors

v’ = S·v

• Point can be scaled
(stretched) by sx
along the x axis
and by sy along the
y axis into new
points by the
multiplication:

2D Scaling

ysy

xsx

y

x





'

'

2D Scaling




















'

'
',

y

x
v

y

x
v 










y

x

s

s
S

0

0

In Matrix form:

v’ = S · v 

2D Scaling

y

x
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6










1

2









1

3 








2

6









2

9

2

3





y

x

s

s

Note: House shifts position relative to origin

• Does not preserve lengths

• Does not preserve angles (except when scaling is

uniform)

Rotation of vectors through an angle q about the origin v’ = Rq · v

x’ = x cos q – y sin q

y’ = x sin q + y cos q

2D Rotation

v’ = Rq · v 








 


qq

qq
q

cossin

sincos
R

In Matrix form:

Rθ – rotation Matrix

2D Rotation

• Suppose object is not centered at origin?

• Solution: move it to the origin, then scale and/or
rotate, then move it back.

• Composition of the successive transformations

2D Rotation and Scale are

Relative to Origin

• Translation, scaling and rotation are expressed as:

• Composition is difficult to express, since translation not expressed as
a Matrix multiplication

• Homogeneous coordinates allow all transformations (translation,
scaling and rotation) to be expressed homogeneously, allowing
composition via multiplication by 3x3 matrices

Homogenous Coordinates

translation:

scale:

rotation:

v’ = v + t

v’ = S · v

v’ = R · v

Homogenous Coordinates















w

y

w

x
PyxP

wwyxP

wwwywxPyxP

dd

h

hd

'
,

'
),(

0),,','(

0),,,(),(

22

2

Point is presented by a triple (x,y,w) or

Two sets of homogenious coordinates (x,y,w) and (x’,y’,w’) are presents

the same point if and only if one a multiple of the other.

The same points by different coordinate triples: (2,3,7), (6,9,21);

















w

y

x

• P2d is intersection of line determined by Ph with the w = 1 plane

• So an infinite number of points correspond to (x, y, 1): they constitute
the whole line (tx, ty, tw)

P2d (x/w, y/w, 1)

Ph (x, y, w)

y

x

w

1

• w is 1 for affine transformations in graphics

Homogenous Coordinates

• For points written in homogeneous coordinates

translation, scaling and rotation relative to the origin are expressed

homogeneously as:

2D Homogeneous Coordinate
Transformations

,

1 















y

x

Matrix Compositions

HdydxTRdydxTHdydxTRHdydxTHHouse),()(),(),()(),()(qq 

With the T Matrix, can avoid unwanted translation

introduced when we scale or rotate an object not centered

at origin:

• translate the object to the origin

• perform the scale or rotate

• translate back.

Matrix Compositions

Rotate about a point P1

• Translate P1 to origin

• Rotate

• Translate back to P1

=

Scale object around point P1

• P1 to origin

• Scale

• Translate back to P1

• Compose into T

P’ = T · P :

Matrix Compositions

• Scale + rotate object around point P1 and move to P2

– P1 to origin

– Scale

– Rotate

– Translate to P2

Matrix Compositions

Multiple transformations in proper

order:

P’ = T · P

P’ = ((T ·(R· (S · T))) · P)

P’ = (T· (R· (S· (T· P))))

Matrix Compositions

Transformations are
NOT Commutative

y

x
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

y

x
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

Rotation → Translation

Translation → Rotation

2D Affine

Transformations

All represented as Matrix operations on vectors

Parallel lines preserved, angles/ lengths not

• Scale

• Rotate

• Translate

• Reflect

• Shear

Pics/Math courtesy of Dave Mount @ UMD-CP

Matrix Representation of

2D Affine Transformations

2D Shear

Shear operation along y axis

Shear operation

– Preserves

parallels

– Does not preserve

lengths and angles

• Take a scene and “skew” it to the side

• Squares become parallelograms - x coordinates skew to the right, while y

coordinates stay the same

• 900 between axes becomes q

• Like taking a deck of cards and pushing top to the side – each card shifts relative

to the one below it

• Notice that the base of the house (at y=1) remains horizontal, but shifts to the

right…

Skew/Shear/Translate
















10
tan

1
1

qqSkewq

y

x
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

q

4


q 

NB: A skew of 0 angle, i.e. no skew at all, gives us the identity Matrix, as it should

• Everything along the line y=1 stays on the line y=1, but is

translated to the right

• Distance between points on this line is preserved

• A 1D homogeneous coordinate translation looks like a 2D skew

transformation

Skew/Shear/Translate

























10

1

10
tan

1
1 dx

q

original y-axis









10

11
T

Vertices in motion (“Generative object description”)

• Line is drawn by tracing path of a point as it moves (one dimensional entity)

• Square drawn by tracing vertices of a line as it moves perpendicularly to itself

(two dimensional entity)

• Cube drawn by tracing paths of vertices of a square as it moves

perpendicularly to itself (three-dimensional entity)

• Circle drawn by swinging a point at a fixed length around a center point

2D to 3D Object Definition

• Triangles and tri-meshes

• Often parametric polynomials, called splines

Building 3D Primitives

PatchesCurves

Boundaries are

Polynomial curves

In 3D

3D Transformations

 Affine

transformations

- Translation

- Scaling

- Rotation

 Deformations

- Twisting

- Tapering

- Bending

 Set-theoretic

operations

 Metamorphosis

Translation

Affine transformations

Coordinate-axes rotations

Affine transformations

Scaling

Affine transformations

Deformations

Images by A. Barr

Twisting
Deformations

Tapering
Deformations

Images by A. Barr

Images by A. Barr

Bending

Deformations

Set-theoretic operations

Metamorphosis

Can a constructive solid have an implicit surface?

Metamorphosis of implicit

surfaces

bcg.qt.mov
bcg.qt.mov

• 3D scenes are typically stored in a directed acyclic graph
(DAG) called a scene graph

– Open Scene Graph (used in the Cave)

– Sun’s Java3D™

– x3D ™ (ex VRML ™)

Transforms in Scene Graphs

• Typical scene graph format (there are hundreds of packages!)

– objects (cubes, sphere, cone, polyhedra etc.) with basic defaults (located at the

origin within unit box) stored as nodes

– attributes (color, texture map, etc.) and transformations are also nodes in scene

graph (labeled edges on slide 2 are an abstraction)

Transforms in Scene Graphs

ROBOT

upper body lower body

head trunk
arm

stanchion
base

1. Leaves of tree are standard size object primitives

2. We transform them

3. To make sub-groups

4. Transform subgroups

5. To get final scene

Scene graph

• In the scene graph below, transformation t0 will affect all
objects, but t2 will only affect obj2 and one instance of
group3 (which includes an instance of obj3 and obj4)

– t2 doesn’t affect obj1, other instance of group3

• Note that if you want to use multiple instances of a sub-tree,
such as group3 above, you must define it before it’s used

– this is so that it’s easier to implement

object nodes (geometry)

transformation nodes

group nodes

group3

obj3 obj4

t5 t6

t4

root

t0

group1

t1 t2

obj1 group3

t3

group2

group3obj2

Transforms in Scene Graphs

• An example:

- for o1, CTM = m1

- for o2, CTM = m2* m3

- for o3, CTM = m2* m4* m5

- for a vertex v in o3, its position in the world (root)
coordinate system is:

CTM v = (m2*m4*m5)v

g: group nodes

m: matrices of the transform nodes

o: object nodes
m5

m1 m2

m3 m4

o1

o2

o3

g1

g2

g3

Transforms in Scene Graphs

References

• James D. Foley,

Andries van Dam,

Steven K. Feiner, John

F. Hughes, Computer

Graphics: Principles

and Practice (2nd

Edition in C), Addison-

Wesley, Reading, MA,

1997.

Hearn Donald, Baker

M.P., Computer

Graphics, New York,

Prentice Hall, 2nd

Edition, 1994.

References

• I.N. Bronshtein, K.A. Semendyayev, G.
Musiol, H. Muehlig, H. Mühlig, Handbook
of Mathematics, Springer, 2003

• MathWorld, 2006
http://mathworld.wolfram.com

• Wikipedia, 2006
http://en.wikipedia.org/wiki

References

http://mathworld.wolfram.com/
http://en.wikipedia.org/wiki

