Discrete Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov www.pasko.org/ap/DM

Relations

Contents

- Binary relations
- Relations on a set
- Properties of relations
- Composite relations
- n-ary relations and operations
- Representing relations
- Closures of relations
- Equivalence relations, classes, partitions
- Spatial relations

Relationships

- Relationships between elements of sets occur in many contexts:
- the set of employees and the set of their salaries
- flight numbers and take off times
- students and subjects
- a real number and integers that are larger than it
- a computer language and a valid statement in this language
- Relationships between elements of sets are represented using the discrete structure called a relation

Cartesian Product of Sets

For sets A, B, their Cartesian product $A \times B: \equiv\{(a, b) \mid a \in A \wedge b \in B\}$
is the set of all possible ordered pairs whose first component is a member of A and whose second component is a member of B

Example:

Flights $=\{K L 108$, BA9, AF11 $\}$
Time $=\{12,13\}$
Flights \times Time $=$
\{(KL108,12), (KL108,13),
(BA9,12),(BA9,13),
(AF11,12),(AF11,13) \}

Binary Relations

- Let A, B be any sets. Binary relation R from A to $B, R: A \times B$ can be identified with a subset of $A \times B$:

$$
R \subseteq\{(a, b) \mid a \in A \wedge b \in B\}
$$

- $(a, b) \in R$ means that a is related to b (by R)
- Relation also written as $a R b$ or $R(a, b)$:

$$
a R b \Leftrightarrow(a, b) \in R
$$

- Example:
- relation < can be seen as $\{(a, b) \mid a<b\}$
$-\mathrm{a}<\mathrm{b}$ and $<(\mathrm{a}, \mathrm{b})$ both mean $(\mathrm{a}, \mathrm{b}) \in<$

Binary Relations

Defining a binary relation:

- Make a list of all pairs (a, b)
- If $P(x 1, x 2)$ is a predicate with two variables, then $\{(a, b) \mid P(a, b)\}$ is a binary relation
- A binary relation R corresponds to a characteristic function $P_{R}: A \times B \rightarrow\{T, F\}$ defining a subset R with True values

Example 1

Flights $=\{K L 108, B A 9, A F 11\}$
Time $=\{12,13\}$
Cartesian product
Flights \times Time $=$
\{ (KL108,12),(KL108,13),(BA9,12),(BA9,13),(AF11,12),(AF11,13) \}
Relation
Takeoff (Flights, Time) \subseteq Flights \times Time
Takeoff (Flights, Time) =
\{ (KL108,12), (BA9,13), (AF11,13) \}

Binary Relations

Example 2

- Students A:
- Alex, Bea, Cath, Don, Eddie, Fiona
- Subjects B:
- IP1, FP1, AF2
- Let R be the relation of students who passed subjects

$$
\begin{aligned}
R= & \{(\text { Alex,IP1 }),(\text { Alex,AF2 }),(\text { Bea }, \text { AF2 }),(\text { Cath }, \text { AF2 }),(\text { Cath }, I P 1), \\
& (\text { Don,AF2),(Don,IP1),(Fiona,IP1),(Eddie,IP1),(Fiona,FP1) }\}
\end{aligned}
$$

- $|A x B|=18,|R|=?$
- Order between pairs is insignificant (look at Fiona)
- Order within pairs is significant (a pair (FP2,Fiona)?)

Binary Relations

$$
\begin{aligned}
\text { R }= & \{(\text { Alex,IP1),(Alex,AF2),(Bea,AF2),(Cath,AF2),(Cath,IP1), } \\
& \text { (Don,AF2),(Don,IP1),(Fiona,IP1),(Eddie,IP1),(Fiona,FP1) }
\end{aligned}
$$

It is not a function
But you could have functional relations

Relations on a Set

- A (binary) relation from a set A to itself is called a relation on the set A.
- Binary relation R on set $A, R: A \times A$ is a subset of $A \times A$:

$$
R \subseteq\{(a, b) \mid a \in A \wedge b \in A\}
$$

- Example: the "<" relation can be defined as a relation on the set \mathbf{N} of natural numbers.

Relations on a Set

Example:

Let A be the set $\{1,2,3,4\}$.
Which ordered pairs are in the relation on the set A :
$R=\{(a, b) I$ a divides $b\}$?
$R=\{(1,1),(1,2),(1,3),(1,4)$,
$(2,2),(2,4),(3,3),(4,4)\}$

How many relations are there on a set of n elements?
When we have a relation on a single set A

- each relation R_{i} is a subset of $\{(x, y) \mid x \in A \wedge y \in A\}$
- the cardinality of $A \times A$ is $|A \times A|=n^{2}$
- there are 2^{k} subsets of a set of size k
- if the set of tuples to choose from is of size $k=n^{2}$
- then there are $2^{n^{2}}$ possible subsets

There are $2^{n^{2}}$ possible relations on a set of n elements

Functions as Relations

- Recall: function from a set A to a set B assigns exactly one element of B to each element of A
- We can represent a function explicitly by listing for each value a in the domain A its image b in the co-domain B
- That is we can represent the function as a set of pairs (a, b) as a binary relation
$\mathrm{F}: A \rightarrow B$
- where $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
- $A=\{-2,-1,0,1,2,3\}$ and $B=\{0,1,2,3,4,5,6,7,8,9\}$

$$
R=\{(-2,4),(-1,1),(0,0),(1,1),(2,4),(3,9)\}
$$

Representing Relations

- General ways to represent n-ary relations:
- With a list of n-tuples.
- With a function from the (n-ary) domain to $\{\mathbf{T}, \mathbf{F}\}$.
- Special ways to represent binary relations:
- With a zero-one matrix.
- With a directed graph.

Representing Relations

- Why bother with alternative representations? Is one not enough?
- One reason: calculations are easier using one representation, other things are easier using another representation
- Matrices are appropriate for the representation of relations in computer programs
- Directed graphs are useful for understanding the properties of these relations.

Zero-One Matrices

- To represent a binary relation $R: A \times B$ by a 0-1 matrix $M_{R}=\left[m_{i j}\right]$ of size $|A| \times|B|$, let $m_{i j}=1$ if $\left(a_{i j}, b_{j}\right) \in R$ and $m_{i j}$
= 0 otherwise.
- Example:

Joe likes Susan and Mary, Fred likes Mary and Sally.

- Then the 2×3 matrix representation of the relation
Likes:Boys \times Girls is: Susan Mary Sally
Joe
Fred $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$
- Special case:

0-1 matrices for relations $R: A \times A$

- Convention: rows and columns list elements of A in the same order
- Square matrix $n \times n$, where $n=|A|$

Example:

$A=\{a, b, c\}$
$R=\{(a, a),(b, c),(c, c)\}$

R	a	b	c
a	1	0	0
b	0	0	1
c	0	0	1

Directed Graphs

- Directed graph or digraph $G=\left(V_{G}, E_{G}\right)$ is a set V_{G} of vertices (nodes) with a set $E_{G} \subseteq V_{G} \times V_{G}$ of edges (links, arcs). Visually represented using dots for nodes, and arrows for edges. A relation $R: A \times B$ can be represented as a graph $G_{R}=\left(V_{G}=A \cup B, E_{G}=R\right)$.

Matrix representation M_{R} :
Susan
$\left[\begin{array}{ccc}1 & \text { Mary } & \text { Sally } \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Graph
rep. G_{R} :

Representing Relations

Example for $R: A \times A$:
$A=\{1,2,3,4\}$
R is the relation "a divides b" on set A:
$R=\{(a, b) / a$ divides $b, a \in A \wedge b \in A\}$
$R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

R	1	2	3	4
1	1	1	1	1
2	0	1	0	1
3	0	0	1	0
4	0	0	0	1

Contents

- Binary relations
- Relations on a set
- Properties of relations
- Composite relations
- n-ary relations and operations
- Representing relations
- Closures of relations
- Equivalence relations, classes, partitions
- Spatial relations

Spatial Relations

- Spatial relation $R: G \times G$ can be identified as a subset of the Cartesian product $G \times G$:

$$
R \subseteq\{(g 1, g 2) \mid g 1 \in G \wedge g 2 \in G\}
$$

where G is a set of all subsets (geometric objects) of some geometric space (for example 3D Euclidean space)

- A binary relation R corresponds to a characteristic function $P_{R}: G \times G \rightarrow\{T, F\}$ defining a subset of all pairs $(g 1, g 2)$ with True values
Example: relation L1||L2 includes all pairs of parallel straight lines in the Euclidean space
- Topological Relations: containment, overlapping, etc.

- Geometric Relations: parallelism ||, orthogonality \perp
- Metric Relations: distance between objects, etc.

- Direction Relations: north of, south of, etc.

Topological Relations

- Topological relations are defined using point-set topology concepts, such as boundary, interior and exterior:
- Boundary of a region consists of a set of points that separate the region from the rest of the space
- Interior of a region consists of all points
 in the region that are not on its boundary
- Exterior of a region consists of all points that are neither boundary nor interior
- Example: adjacency relation means that two regions share a part of a boundary but do not share any points in their interior, also called meet or touch relation

Point Inclusion

- Point inclusion relation

$$
R \subseteq\{(p, g) \mid p \in P \wedge g \in G \wedge p \in g\}
$$

where P is a set of all points of some geometric space, G is a set of subsets (geometric objects) of the geometric space, p is a point and g is a geometric object.

- Defined by a binary predicate:

$$
S_{2}(p, g)=\left\{\begin{array}{l}
1, p \in g \\
0, p \notin g
\end{array}\right.
$$

Topological Relations

Exterior, Interior, Boundary

Neighbourhood is an open ball centered at a point

Exterior, Interior, Boundary

- Exterior e(g) of the point set g is a set of points, which are not contained within g (exterior points)
- Interior $i(g)$ of the point set g is a set of points p, where p is contained within g together with some neighbourhood (interior points)
- Boundary $b(g)$ of the point set g is a set of points p, where any neighbourhood of p contains both exterior and interior points (boundary points)
- Example: for lines, the boundary of a line consists of its endpoints, the interior of a line consists of all points composing the line excluding its endpoints.

Topological Relations

Point Membership

- Point membership property is defined by a three-valued predicate:

$$
S_{3}(p, g)=\left\{\begin{array}{l}
0, p \notin g, p \in e(g) \\
1, p \in b(g) \\
2, p \in i(g)
\end{array}\right.
$$

- Related to ternary logic operating with 3 values (True, False, Unknown)
- Can be considered as defined by two binary predicates: $S_{2}(p, g)$ and $S_{2}(p, i(g))$

1. DISJOINT: boundaries and interiors do not intersect

A

2. CONTAINS: interior and boundary of one object is completely contained in the interior of other object

A

A Contains B
 B Inside A

Basic classification

3. INSIDE: opposite of CONTAINS; A INSIDE B implies B CONTAINS A

4. EQUAL: the two objects have the same boundary and interior
A red B green

Basic classification

5. MEET: boundaries intersect, but interiors do not intersect

Meet (Touch)
6. COVERS: interior of one object is completely contained in interior of other object and their boundaries intersect A

A Covers B
B Covered by A

Basic classification

7. COVERED BY: opposite of COVERS; A COVERED BY B

 implies B COVERS A

A Covered by B B Covers A
8. OVERLAP: boundaries and interiors of the two objects intersect

A

Topological Relations

4-Intersection Matrix

- 4-intersection matrix for topological relations between point sets
- Defined on the basis of intersections between boundary and interior of two point sets A and B involved

$$
\left(\begin{array}{ll}
b(A) \cap b(B) & b(A) \cap i(B) \\
i(A) \cap b(B) & i(A) \cap i(B)
\end{array}\right)
$$

Each entry in the matrix is either empty or non-empty
Example:

$\operatorname{Meet}(A, B)$

4-Intersection Matrix

- $16\left(2^{4}\right)$ possible matrix configurations, but only 8 are possible for regions without holes

$\left(\begin{array}{ll}\varnothing & \varnothing \\ \varnothing & \varnothing\end{array}\right) \quad\left(\begin{array}{cc}\varnothing & \varnothing \\ -\varnothing & -\varnothing\end{array}\right)\left(\begin{array}{ll}\varnothing & -\varnothing \\ \varnothing & -\varnothing\end{array}\right) \quad\left(\begin{array}{cc}\neg \varnothing & \varnothing \\ \varnothing & -\varnothing\end{array}\right)$

Meet	Covers	Covered by	Overlap
$\left(\begin{array}{cc} -\varnothing & \varnothing \\ \varnothing & \varnothing \end{array}\right)$	$\left(\begin{array}{cc} \neg \varnothing & \varnothing \\ -\varnothing & -\varnothing \end{array}\right)$	$\binom{\neg \varnothing \neg \varnothing}{\varnothing \neg \varnothing}$	$\binom{-\varnothing-\varnothing}{-\varnothing-\varnothing}$

4-Intersection Matrix

- Pros:
- simple model
- well accepted
- Cons:
- Does not distinguish between conceptually different situations:

- All three situations correspond to the same matrix:

$$
\binom{\neg \varnothing \neg \varnothing}{\neg \varnothing \neg \varnothing}
$$

4-Intersection Matrix

Use different values for matrix entries:

- for example, number of connected components of the intersections can be used to distinguish (1) and (2)

(1)

(2)
- adding the dimension of each component would distinguish from case (3)

Note: boundary intersection dimension 1 (curve)

9-Intersection Matrix

- 9-intersection matrix for topological relations between point sets and considers interior, boundary, exterior

$$
\left(\begin{array}{ccc}
i(A) \cap i(B) & i(A) \cap b(B) & i(A) \cap e(B) \\
b(A) \cap i(B) & b(A) \cap b(B) & b(A) \cap e(B) \\
e(A) \cap i(B) & e(A) \cap b(B) & e(A) \cap e(B)
\end{array}\right.
$$

- Entries in the matrix can assume values empty/nonempty or correspond to other properties such as number of components and dimension of each component

9-Intersection Matrix

Example

- Consider two polygons
- A - POLYGON ((10 10, $150,250,3010$, 25 20, 15 20, 10 10))
- B - POLYGON ((20 10, 300,40 10, 30 20, 20 10))

9-Intersection Matrix Example: Intersection Components
i(B)
b(B)
e(B)
i(A)

	$i(B)$	$b(B)$	$e(B)$
$i(A)$	2	1	2
$b(A)$	1	0	1
$e(A)$	2	1	2

Distance-based Metric Relations

- Distance between two point sets is defined as minimal distance between their points
- If dist is a distance function and \mathbf{c} is some real number, possible types of relations:

1. $\operatorname{dist}(A, B)>C$,
2. $\operatorname{dist}(A, B)<c$ and
3. $\operatorname{dist}(A, B)=C$

$\operatorname{dist}(A, B)<c$

$\operatorname{dist}(A, B)=c$

Direction Relations

- If directions of B and C are required with respect to A
- Define a representative point, rep(A)
- rep(A) defines the origin of a virtual coordinate system
- The quadrants and half planes define the direction relations
- B can have two values \{northeast, east\}
- Exact direction relation is northeast

References on

 Spatial Relations- A. Requicha, Geometric Modeling: A First Course, on-line book at
http://www-Imr.usc.edu/~requicha/book.html
- M. Mortenson, Geometric Modeling, Wiley, 1997, 523 p.
- C. Hofmann, Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, 1989, 338 p.
- M. Egenhofer, R. Franzosa, Point-set topological spatial relations, International Journal of
Geographical Information Systems, Volume
5, Issue 2, 1991, pp. 161-174

