

Image www.allthingsdistributed.com

Contents

- Graph terminology
- Handshaking theorem
- Special graphs
- Graph representations

Notion of Graph

- Technical meaning of graphs in discrete mathematics is a particular class of discrete structures that is useful for representing relations between elements of sets.
- Graph has a convenient graphical representation with vertices (for elements) connected by edges (for relations).

General Graph

- Graph G = (V, E)
 consists of
 vertices V = {v1, v2, ...}
 edges E = {e1, e2, ...}
- Each edge ek in E is identified with an unordered pair (Vi, Vj) of vertices called the end vertices of ek.

parallel edges

Relations and Graphs

- Relation is a subset of the Cartesian product R A×A
- Cartesian product A×A includes all pairs (a,b) of elements of A: the graph of it connects all the nodes with each other with edges.
- Graph of relation *R* includes some subset of edges
 E V×V

What is missing in this graph for A×A?

Simple Graph

Graph that has neither self-loop nor parallel edges is called a simple graph

- G = (V,E)
- V = {a,b,c,d,e}
- $E = \{(a,b), (a,d), (b,c), (c,d), (c,e), (d,e)\}$

Simple Graph

- In terms of relations, simple graph G=(V,E) includes:
 - set of vertices V corresponds to the universe of the relation R
 - a set *E* of *edges* represents unordered pairs of distinct elements $a, b \in V$, such that *aRb*
 - simple graph corresponds to binary relation *R* which is
 - symmetric $\forall a, b((a, b) \in R \Leftrightarrow (b, a) \in R)$
 - irreflexive $\forall a \in A(\neg aRa)$

Directed Graphs

- Directed graph or a digraph (V,E) consists of a set of vertices V and a set E of ordered pairs of vertices.
- Example: V = people,
 E={(x,y) | x loves y}

Example 1

- G = (V,E)
 - V is set of vertices
 - E is set of directed edges

Directed Graph

• $E = \{(a,d),(b,a),(b,c),(c,d),(c,e),(d,c),(d,e)\}$

Adjacency

- Let G be an undirected graph with edge set E. Let $e \in E$ be (or map to) the pair (u, v). Then we say:
- Vertices *u*, *v* are *adjacent* or *connected*.
- Edge *e* is *incident with* vertices *u* and *v*.
- Edge e connects u and v.
- Vertices *u* and *v* are *endpoints* of edge *e*.

Degree of a Vertex

- Let G be an undirected graph, $v \in V$ a vertex.
- The degree of v, deg(v), is its number of incident edges (except that any self-loops are counted twice)
- A vertex with degree 0 is called *isolated vertex*
- A vertex with degree 1 is called a *leaf vertex* or end vertex, and the edge incident with that vertex is called a *pendant edge*
- Note: degree = valency

Degree of a Vertex

Find the degree of all the other vertices. deg(a) = 2 deg(c) = 4 deg(f) = 3 deg(g) = 4TOTAL of degrees = 2 + 4 + 3 + 4 + 6 + 1 + 0 = 20**TOTAL NUMBER OF EDGES = 10** d С deg(b) = 6deg(d) = 1b deg(e) = 0g e а

Handshaking Theorem

$$G = (V,E) \quad 2e = \sum_{v \in V} \deg(v)$$

For a simple graph G with e edges, the sum of the degrees is 2e

Why?

- Edge (u,v) adds 1 to the degree of vertex u and vertex v
- Therefore edge(u,v) adds 2 to the sum of the degrees of G
- Consequently the sum of the degrees of the vertices is 2e
- Note: This applies even if multiple edges and loops are present.

2e = deg(a) + deg(b) + deg(d) + deg(v) + deg(u) = 2 + 2 + 3 + 3 + 2 = 12

Handshaking Theorem

There is an even number of vertices of odd degree

deg(d) = 3 and deg(c) = 3

Directed Adjacency

- Let G be a directed graph, and let e be an edge of G that is (u,v). Then we say:
 - u is adjacent to v, v is adjacent from u
 - e comes from u, e goes to v.
 - e connects u to v, e goes from u to v
 - the initial vertex of e is u
 - the *terminal vertex* of *e* is *v*

Directed Graphs

U

Directed Degrees

- (u,v) is a directed edge
- u is the initial vertex
- v is the terminal or end vertex

In-degree of a vertex - number of edges with v as terminal vertex $deg^+(v)$

Out-degree of a vertex - number of edges with v as initial vertex $deg^{-}(v)$

Directed Graphs Directed Handshaking Theorem

- u is the initial vertex
- v is the terminal or end vertex

$$\sum_{v \in V} \deg^+(v) = \sum_{v \in V} \deg^-(v) = |E|$$

Total in-degrees is equal to total out-degrees and equal to the number of edges. Each directed edge (u, v) adds 1 to the out-degree of one

U

Each directed edge (u,v) adds 1 to the out-degree of one vertex and adds 1 to the in-degree of another.

Contents

- Graph terminology
- Handshaking theorem
- Special graphs
- Graph representations
- Isomorphism

Special Graph Structures

Special cases of undirected graph structures:

- Empty and null graphs
- Complete graphs K_n
- Cycles C_n
- Wheels W_n
- *n*-Cubes Q_n
- Bipartite graphs
- Complete bipartite graphs K_{m,n}
- Star graphs S_k

Empty Graph / Edgeless graph
 – No edges

- Null graph
 No nodes
 - Obviously no edges

Complete Graphs

Complete graph K_n (from the German komplett) or a clique is a graph such that for every two vertices, there exists an edge connecting the two: every vertex is connected to every other vertex.

G = (V, E)

 $\left|E\right| = \frac{n(n-1)}{2}$

n = |V|

How many edges are there in K_n ? What is the degree of every vertex?

Complete Graphs

Complete graphs on *n* vertices shown with the numbers of edges

Complete Graphs

- In a complete graph every vertex is adjacent to every other vertex:
 ∀ u, v ∈ V: u≠v↔(u,v) ∈ E
- Can E contain any edges connecting a vertex in V to itself (loops)?
 No: this would mean (u,v)∈E, where u=v hence ¬∀u,v∈V: u≠v↔(u,v)∈E.

Cycles

For any *n*≥3, a *cycle* on *n* vertices *C_n* is a simple graph where *V*={*v*₁, *v*₂,..., *v_n*} and *E*={(*v*₁, *v*₂), (*v*₂, *v*₃),..., (*v_{n-1}*, *v_n*), (*v_n*, *v₁*)}

How many edges are there in C_n ? What is the degree of every vertex?

- Can a cycle be a complete graph?
- Yes: every cycle with exactly 3 elements is a complete graph. C_3
- *K*₃
 No other cycle can be a complete graph.

Wheels

For any n≥3, a wheel W_n, is a simple graph obtained by taking the cycle C_n and adding one extra vertex v_{hub} and n extra edges {(v_{hub}, v₁), (v_{hub}, v₂),...,(v_{hub}, v_n)}.

How many edges are there in W_n ? What is the degree of every vertex?

Regular Graphs

A graph is n-regular if every vertex has the same degree n

Example: $\forall v \deg(v) = 3$ 3-regular graph

Regular Graphs

Which of these graphs are regular? What degree? – Complete graphs?

– Cycle graphs?

- Wheel graphs?

Regular Graphs

Which of these are regular?

What degree?

- Complete graphs? Yes: degree n-1 (for n nodes)
- Cycle graphs? Yes: degree 2
- Wheel graphs? No, except W_3

n-Cubes

For any n∈N, the n-cube or hypercube Q_n is a simple graph consisting of two copies of Q_{n-1} connected together at corresponding nodes. Q₀ has 1 node.

Number of vertices: 2ⁿ Number of edges: n2ⁿ⁻¹

Construction of the hypecube graph Q₄:

- 2 copies of Q₂ with connected corresponding nodes = Q₃
- 2 copies of Q₃ with connected corresponding nodes = Q₄

Bipartite Graphs

A graph G=(V,E) is *bipartite* (two-part) if $V = V_1 \cup V_2$ where $V_1 \cap V_2 = \emptyset$ and $\forall e \in E: \exists v_1 \in V_1, v_2 \in V_2:$ $e=(v_1, v_2)$

The graph can be divided into two parts in such a way that all edges go between the two parts.

- Bipartite graphs are extremely common for modelling a domain that consists of two different kinds of entities
 - Animals in a zoo, linked with their keepers
 - Words, linked with numbers of letters in them
 - Logical formulas, linked with English sentences that express their meaning

Bipartite graphs

- Given a (bipartite) graph, can there be more than one way of partitioning *V* into V₁ and V₂ ?
- Yes: isolated vertices can be put in either part:

Complete Bipartite Graphs

- For $m,n \in \mathbb{N}$, the complete bipartite graph $K_{m,n}$ is a bipartite graph where $|V_1| = m$, $|V_2| = n$, and $E = \{(v_1, v_2) | v_1 \in V_1 \land v_2 \in V_2\}$.
 - That is, there are *m* nodes in the left part, *n* nodes in the right part, and every node in the left part is connected to every node in the right part.

 $K_{m,n}$ has nodes and edges.

Bipartite graphs

- The Cartesian product of universal subjects and absolute
 principles, from Athanasius
 Kircher's "Ars Magna Sciendi", 1669.
- Complete bipartite
 graph

Subjectorum Universalium cum principiis absolutis

Star Graphs

A star graph S_k is the complete bipartite graph $K_{1,k}$ with one internal node of degree k and k leaves.

The star graphs S_3 , S_4 , S_5 and S_6

Making New Graphs

We can have a subgraph

$$G = (V, E)$$
$$H = (W, F)$$
$$W \subseteq V$$
$$F \subseteq E$$

We can have a union of graphs

$$G_{1} = (V_{1}, E_{1})$$

$$G_{2} = (V_{2}, E_{2})$$

$$G_{3} = G_{1} \cup G_{2}$$

$$G_{3} = (V_{1} \cup V_{2}, E_{1} \cup E_{2})$$

Subgraphs

Subgraph of a graph G=(V,E) is a graph H=(W,F) where $W \subseteq V$ and $F \subseteq E$.

Subgraphs

C_5 is a subgraph of K_5

Spanning Subgraph

Spanning subgraph H has the same vertex set as graph G.

- Possibly not all the edges
- "H spans G".

Subgraphs

Special Subgraphs: Cliques

A clique in a graph is a subgraph such that every two vertices in it are connected by an edge.

A maximum clique is a maximum complete subgraph.

Subgraphs

All complete graphs are their own cliques.

Graphs Union

Union $G_1 \cup G_2$ of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph $(V_1 \cup V_2, E_1 \cup E_2)$.

Graphs Union

W_5 is the union of S_5 and C_5

Contents

- Graph terminology
- Handshaking theorem
- Special graphs
- Graph representations
- Isomorphism

Graph Representations

Graph representations:

- -Edge list
- Adjacency list
- Adjacency matrix
- Incidence matrix

Graph Representations Edge List

• Edge List: pairs (ordered if directed) of vertices

Graph Representations

Edge Lists for Weighted Graphs

Edge List: pairs (ordered if directed) of vertices with weights and other data

Graph Representations

Adjacency List

Table with one row per vertex, listing its adjacent vertices (node list).

A simple graph G = (V, E) with n vertices can be represented by its adjacency matrix A, where entry a_{ij} in row *i* and column *j* is

Example

 W_5

This graph has 6 vertices a, b, c, d, e, f. We can arrange them in that order for both rows and columns of the matrix.

There are edges from a to b, from a to e, and from a to f

There are edges from b to a, from b to c, and from b to f

There are edges from c to b, from c to d, and from c to f

Notice that this matrix is symmetric. That is $a_{ij} = a_{ji}$ Why?

Adjacency matrix properties:

$$(i, j) \notin E \leftrightarrow a_{i,j} = 0$$
 $(i, j) \in E \leftrightarrow a_{i,j} = 1$

A is symmetric for simple graphs

$$(i, j) \in E \leftrightarrow a_{i,j} = 1 = a_{j,i}$$

Simple graphs do not have loops (v,v)

$$\forall i(a_{i,i}=0)$$

Incidence Matrix

The incidence matrix of a graph is a (0,1)-matrix which has a row for each vertex and column for each edge, and (v,e) = 1 if edge *e* is incident with vertex *v*.

Questions?

SequoiaView