Discrete Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov www.pasko.org/ap/DM

Image www.allthingsdistributed.com

Contents

- Graph terminology
- Handshaking theorem
- Special graphs
- Graph representations

Notion of Graph

- Technical meaning of graphs in discrete mathematics is a particular class of discrete structures that is useful for representing relations between elements of sets.
- Graph has a convenient graphical representation with vertices (for elements) connected by edges (for relations).

General Graph

- Graph $G=(V, E)$
consists of
vertices $V=\{v 1, v 2, \ldots\}$ edges $E=\{e 1, e 2, \ldots\}$
- Each edge e_{k} in E is identified with an

unordered pair (v_{i}, v_{j}) of
parallel edges
vertices called the end vertices of e_{k}.

Relations and Graphs

- Relation is a subset of the Cartesian product $R \subseteq A \times A$
- Cartesian product $A \times A$ includes all pairs (a,b) of elements of A : the graph of it connects all the nodes with each other with edges.
- Graph of relation R includes some subset of edges $E \subseteq V \times V$

What is missing in this graph for $A \times A$?

Simple Graph

Graph that has neither self-loop nor parallel edges is called a simple graph

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$

- $V=\{a, b, c, d, e\}$
- $\mathrm{E}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{d}),(\mathrm{c}, \mathrm{e}),(\mathrm{d}, \mathrm{e})\}$
- In terms of relations, simple graph $G=(V, E)$ includes:
- set of vertices V corresponds to the universe of the relation R
- a set E of edges represents unordered pairs of distinct elements $a, b \in V$, such that $a R b$
- simple graph corresponds to binary relation R which is
- symmetric $\forall \mathrm{a}, \mathrm{b}((\mathrm{a}, \mathrm{b}) \in R \Leftrightarrow(\mathrm{~b}, \mathrm{a}) \in R)$
- irreflexive $\forall a \in A(\neg a R a)$

Directed Graphs

- Directed graph or a digraph (V,E) consists of a set of vertices V and a set E of ordered pairs of vertices.
- Example: $V=$ people, $E=\{(x, y) \mid x$ loves $y\}$

Adjacency

Let G be an undirected graph with edge set E. Let $e \in E$ be (or map to) the pair (u, v).
Then we say:

- Vertices u, v are adjacent or connected.
- Edge e is incident with vertices u and v.
- Edge e connects u and v.
- Vertices u and v are endpoints of edge e.

Degree of a Vertex

- Let G be an undirected graph, $v \in V$ a vertex.
- The degree of $v, \operatorname{deg}(v)$, is its number of incident edges (except that any self-loops are counted twice)
- A vertex with degree 0 is called isolated vertex
- A vertex with degree 1 is called a leaf vertex or end vertex, and the edge incident with that vertex is called a pendant edge
- Note: degree = valency

Find the degree of all the other vertices.
$\operatorname{deg}(a)=2 \operatorname{deg}(c)=4 \quad \operatorname{deg}(f)=3 \quad \operatorname{deg}(g)=4$
TOTAL of degrees $=\mathbf{2 + 4 + 3 + 4 + 6 + 1 + 0 = 2 0}$
TOTAL NUMBER OF EDGES = 10
$\operatorname{deg}(b)=6$

$\operatorname{deg}(d)=1$
$\operatorname{deg}(e)=0$

Handshaking Theorem

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \quad 2 e=\sum_{\nu \in V} \operatorname{deg}(\nu)
$$

For a simple graph G with e edges, the sum of the degrees is $2 e$

Why?

- Edge (u, v) adds 1 to the degree of vertex u and vertex v
- Therefore edge(u,v) adds 2 to the sum of the degrees of G
- Consequently the sum of the degrees of the vertices is $2 e$
- Note: This applies even if multiple edges and loops are present.
$2 e=\operatorname{deg}(a)+\operatorname{deg}(b)+\operatorname{deg}(d)+\operatorname{deg}(v)+\operatorname{deg}(u)=2+2+3+3+2=12$

Handshaking Theorem

There is an even number of vertices of odd degree
 $\operatorname{deg}(\mathrm{d})=3$ and $\operatorname{deg}(\mathrm{c})=3$

Directed Adjacency

- Let G be a directed graph, and let e be an edge of G that is (u, v). Then we say:
$-u$ is adjacent to v, v is adjacent from u
- e comes from u, e goes to v.
- e connects u to v, e goes from u to v
- the initial vertex of e is u
- the terminal vertex of e is v

Directed Degrees

- (u, v) is a directed edge
- u is the initial vertex
$\cdot v$ is the terminal or end vertex

In-degree of a vertex - number of edges with v as terminal vertex $\operatorname{deg}^{+}(v)$
Out-degree of a vertex - number of edges with v as initial vertex $\operatorname{deg}^{-}(v)$

$$
\operatorname{deg}(v) \equiv \operatorname{deg}^{-}(\mathrm{v})+\operatorname{deg}^{+}(\mathrm{v})
$$

Directed Graphs Directed Handshaking Theorem

- (u, v) is a directed edge
- u is the initial vertex
- v is the terminal or end vertex

$$
\sum_{v \in V} \operatorname{deg}^{+}(v)=\sum_{v \in V} \operatorname{deg}^{-}(v)=|E|
$$

Total in-degrees is equal to total out-degrees and equal to the number of edges.
Each directed edge (u, v) adds 1 to the out-degree of one vertex and adds 1 to the in-degree of another.

Contents

- Graph terminology
- Handshaking theorem
- Special graphs
- Graph representations
- Isomorphism

Special cases of undirected graph structures:

- Empty and null graphs
- Complete graphs K_{n}
- Cycles C n
- Wheels W_{n}
- n-Cubes Q_{n}
- Bipartite graphs
- Complete bipartite graphs $\mathrm{K}_{m, n}$
- Star graphs S_{k}

Empty and Null Graphs

- Empty Graph / Edgeless graph
- No edges
(4)
(6)
(5)
(1)
- Null graph
- No nodes
- Obviously no edges

Complete Graphs

Complete graph K_{n} (from the German komplett) or a clique is a graph such that for every two vertices, there exists an edge connecting the two: every vertex is connected to every other vertex.

$$
G=(V, E)
$$

How many edges are there in K_{n} ?
What is the degree of every vertex? $\quad n=|V|$

$$
|E|=\frac{n(n-1)}{2}
$$

Complete Graphs

Complete graphs on n vertices shown with the numbers of edges

- In a complete graph every vertex is adjacent to every other vertex:
$\forall u, v \in V: u \neq v \leftrightarrow(u, v) \in E$
- Can E contain any edges connecting a vertex in V to itself (loops)?
No: this would mean $(u, v) \in E$, where $u=v$ hence $\neg \forall u, v \in V: u \neq v \leftrightarrow(u, v) \in E$.

Cycles

- For any $n \geq 3$, a cycle on n vertices C_{n} is a simple graph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)\right\}$

C_{4}

How many edges are there in C_{n} ? What is the degree of every vertex?

Cycles

- Can a cycle be a complete graph?
- Yes: every cycle with exactly 3 elements is a complete graph.

K_{3}
- No other cycle can be a complete graph.

Wheels

- For any $n \geq 3$, a wheel W_{n}, is a simple graph obtained by taking the cycle C_{n} and adding one extra vertex $v_{\text {hub }}$ and n extra edges $\left\{\left(v_{\text {hub }}, v_{1}\right),\left(v_{\text {hub }}, v_{2}\right), \ldots,\left(v_{\text {hub }}, v_{n}\right)\right\}$.

W_{4}

W_{7}
W_{8}
How many edges are there in W_{n} ? What is the degree of every vertex?

Regular Graphs

A graph is n-regular if every vertex has the same degree n

Example:

$\forall v \operatorname{deg}(v)=3$
3-regular graph

Regular Graphs

Which of these graphs are regular?
What degree?

- Complete graphs?
- Cycle graphs?
- Wheel graphs?

Regular Graphs

Which of these are regular?
What degree?

- Complete graphs? Yes: degree n -1 (for n nodes)
- Cycle graphs? Yes: degree 2
- Wheel graphs? No, except W_{3}

n-Cubes

- For any $n \in \mathbf{N}$, the n-cube or hypercube Q_{n} is a simple graph consisting of two copies of Q_{n-1} connected together at corresponding nodes. Q_{0} has 1 node.

Number of vertices: 2^{n}
Number of edges: $\mathrm{n}^{\mathrm{n}-1}$

Construction of the hypecube graph Q_{4} :

- 2 copies of Q_{2} with connected corresponding nodes $=\mathrm{Q}_{3}$
- 2 copies of Q_{3} with connected
 corresponding nodes $=Q_{4}$

Bipartite Graphs

A graph $G=(V, E)$ is bipartite (two-part) if $V=V_{1} \cup V_{2}$
where $V_{1} \cap V_{2}=\varnothing$ and
$\forall e \in E: \exists v_{1} \in V_{1}, v_{2} \in V_{2}$:
$e=\left(v_{1}, v_{2}\right)$
The graph can be divided into two parts in such a way that all edges go between the two parts.

Bipartite graphs

- Bipartite graphs are extremely common for modelling a domain that consists of two different kinds of entities
- Animals in a zoo, linked with their keepers
- Words, linked with numbers of letters in them
- Logical formulas, linked with English sentences that express their meaning

Bipartite graphs

- Given a (bipartite) graph, can there be more than one way of partitioning V into V_{1} and V_{2} ?
- Yes: isolated vertices can be put in either part:

Complete Bipartite Graphs

- For $m, n \in \mathbf{N}$, the complete bipartite graph $\mathrm{K}_{m, n}$ is a bipartite graph where $\left|V_{1}\right|=m$, $\left|V_{2}\right|=n$, and $E=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in V_{1} \wedge v_{2} \in V_{2}\right\}$.
- That is, there are m nodes in the left part, n nodes in the right part, and every node in the left part is connected to every node in the right part.
$\mathrm{K}_{m, n}$ has
nodes and edges.

Bipartite graphs

- The Cartesian product of universal subjects and absolute principles, from Athanasius Kircher's "Ars Magna Sciendi", 1669.
- Complete bipartite graph

Subjectorum Univerfalium cum principiis abrolutis

Star Graphs

A star graph S_{k} is the complete bipartite graph $K_{1, k}$ with one internal node of degree k and k leaves.

The star graphs S_{3}, S_{4}, S_{5} and S_{6}

Making New Graphs

We can have a subgraph

$$
\begin{aligned}
G & =(V, E) \\
H & =(W, F) \\
W & \subseteq V \\
F & \subseteq E
\end{aligned}
$$

We can have a union of graphs

$$
\begin{aligned}
& G_{1}=\left(V_{1}, E_{1}\right) \\
& G_{2}=\left(V_{2}, E_{2}\right) \\
& G_{3}=G_{1} \cup G_{2} \\
& G_{3}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)
\end{aligned}
$$

Subgraphs

Subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.

G

H

Subgraphs

C_{5} is a subgraph of K_{5}

K_{5}
C_{5}

Spanning Subgraph

Spanning subgraph H has the same vertex set as graph G.

- Possibly not all the edges
- "H spans G".

Subgraphs

Special Subgraphs: Cliques

A clique in a graph is a subgraph such that every two vertices in it are connected by an edge.
A maximum clique is a maximum complete subgraph.

All complete graphs are their own cliques.

Graphs Union

Union $G_{1} \cup G_{2}$ of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.

Graphs Union

W_{5} is the union of S_{5} and C_{5}

Contents

- Graph terminology
- Handshaking theorem
- Special graphs
- Graph representations
- Isomorphism

Graph Representations

Graph representations:

-Edge list
-Adjacency list
-Adjacency matrix

- Incidence matrix

Graph Representations

Edge List

- Edge List: pairs (ordered if directed) of vertices

Edge List
12
12
23
25
33
43
45
53
54

Edge Lists for Weighted Graphs

- Edge List: pairs (ordered if directed) of vertices with weights and other data

Edge List	
12	1.2
24	0.2
45	0.3
4	1
5	0.5
5	0.5
6	3

Graph Representations

Adjacency List

Table with one row per vertex, listing its adjacent vertices (node list).

Adjacency Matrix

A simple graph $G=(V, E)$ with n vertices can be represented by its adjacency matrix A, where entry $a_{i j}$ in row i and column j is

Adjacency matrix

Example

This graph has 6 vertices
 a, b, c, d, e, f. We can arrange them in that order for both rows and columns of the matrix.

$$
W_{5}
$$

TO

There are edges from a to b, from a to e, and from a to f

TO

There are edges from b to a, from b to c, and from b to f

TO

There are edges from c to b, from c to d, and from c to f

TO
CROM

Notice that this matrix is symmetric. That is $a_{i j}=a_{j i}$ Why?

Adjacency Matrix

Adjacency matrix properties:

$$
(i, j) \notin E \leftrightarrow a_{i, j}=0 \quad(i, j) \in E \leftrightarrow a_{i, j}=1
$$

A is symmetric for simple graphs

$$
(i, j) \in E \leftrightarrow a_{i, j}=1=a_{j, i}
$$

Simple graphs do not have loops (v, v)

$$
\forall i\left(a_{i, i}=0\right)
$$

Incidence Matrix

The incidence matrix of a graph is a $(0,1)$-matrix which has a row for each vertex and column for each edge, and $(v, e)=1$ if edge e is incident with vertex v.

