Discrete Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov www.pasko.org/ap/DM

Trees

Image from "Wings of Wax", Nederlands Dans Theater

Contents

- Using tree structures
- Notion of tree structure
- Trees terminology
- N-ary and binary trees
- Computer representation of trees
- Binary search tree
- Decision tree
- Tree traversal
- Binary expression tree

Tree Structure

- Tree is a connected undirected graph with no circuits.
- Tree is a connected graph with $\mathrm{n}-1$ edges
- Tree is a graph such that there is a unique simple path between any pair of vertices

Tree structure?

Not trees

Tree

Which Graphs are Trees?

a)

b)

c)

How Many n-Node Trees?

1: 0

2: $\mathrm{O}-\mathrm{O}$
3: $\mathrm{O}-\mathrm{O}-\mathrm{O}$

5:

0

Rooted Tree

- A rooted tree has one vertex designated as root and every other edge is directed away from the root (we put the root at the top)
- Leaf node in a tree is any pendant or isolated vertex of degree 1
- Internal node is any non-leaf vertex

Number of Rooted Trees

Given unrooted tree with n nodes yields n different rooted trees.

Contents

- Using tree structures
- Notion of tree structure
- Trees terminology
- N-ary and binary trees
- Computer representation of trees
- Binary search tree
- Decision tree
- Tree traversal
- Binary expression tree

Tree Terminology

- Parent node is adjacent to the child node and placed above it in the rooted tree
- The ancestors of a non-root vertex are all the vertices in the path from root to this vertex
- Root has no ancestors
- The descendants of vertex v are all the vertices that have v as an ancestor
- Leaf nodes have no children
- Internal node is a node that has children
- Sibling nodes have the same parent

Tree Terminology

- Level of vertex v in a rooted tree is the length of the unique path from the root to v
- Height of a rooted tree is the maximum of the levels of its vertices
- Subtree at vertex v is a subgraph of the tree consisting of vertex v and its descendants and all edges incident to those descendants.

Example: Company Tree

Owner Jake

Waitress Joyce

Waiter Chris

Cook Max

Helper Len

Root

Root has no ancestors.

Leaves

Owner Jake

Waitress Joyce

Chef Carol

Cook Max

Leaf nodes have no children.

Tree Has Levels

Level of vertex v in a rooted tree is the length of the unique path from the root to v

Level One

Level of vertex v in a rooted tree is the length of the unique path from the root to v

Level Two

Owner Jake

Waitress Joyce

Waiter
Chris

Level of vertex v in a rooted tree is the length of the unique path from the root to v

Siblings

Owner Jake

Sibling nodes have the same parent.

Siblings

Owner Jake

Waitres Joyce

Waiter
Chris
Cook
Helper Max Len

Sibling nodes have the same parent.

Left Subtree

LEFT SUBTREE OF ROOT its descendants.

Right Subtree

Tree Terminology Summary

- The parent of H is B
- C is a child of K
- The ancestors of I are E, K, and A

- The descendants of B are F, H, and D
- A is the root, and has no ancestors
- K and its descendants make a subtree
- The sibling of G is J
- The leaf nodes have no children: F,D,J,G,I

Tree and Forest

A not-necessarily-connected undirected graph without simple circuits is called a forest.
Tree

Forest

Leaves in green, internal nodes in brown.

Contents

- Using tree structures
- Notion of tree structure
- Trees terminology
- N-ary and binary trees
- Computer representation of trees
- Binary search tree
- Decision tree
- Tree traversal
- Binary expression tree

n-ary Trees

- Rooted tree is called n-ary if every vertex has no more than n children.
- n-ary tree is called full if every internal (non-leaf) vertex has exactly n children.
- 2-ary tree is called binary tree.

These are handy for describing sequences of yes-no decisions.

- Tree is called full binary tree if every internal vertex has exactly 2 children.

Which Tree is Binary?

Theorem: A given rooted tree is a binary tree if every node has degree ≤ 3, and the root has degree ≤ 2

Ordered Rooted Tree

- This is just a rooted tree in which the children of each internal node are ordered.
- In ordered binary trees, we can define:
- left child, right child
- left subtree, right subtree
- Example:
- left subtree: B and below

Balanced Binary Tree

- A rooted binary tree of height H is called balanced if all its leaves are at levels H or $\mathrm{H}-1$.

Binary Tree Properties

- A tree with N vertices has $\mathrm{N}-1$ edges.
- There are at most $2{ }^{\mathrm{H}}$ leaves in a binary tree of height H .
- If a binary tree with L leaves is full and balanced, then its height is

$$
H=\left\lceil\log _{2} L\right\rceil
$$

Contents

- Using tree structures
- Notion of tree structure
- Trees terminology
- N-ary and binary trees
- Computer representation of trees
- Binary search tree
- Decision tree
- Tree traversal
- Binary expression tree

Computer Representation of Trees

Binary tree data structure with attributes

- data
- the actual information in a node
- left
- the binary tree to the left, or nil
- right
- the binary tree to the right, or nil

Computer Representation of Trees

Compact representation by a 1d array, giving parent of a node:
123
4
5
67
8
$9 \quad 10$
11
1
118
1123
2
35
1

Contents

- Using tree structures
- Notion of tree structure
- Trees terminology
- N-ary and binary trees
- Computer representation of trees
- Binary search tree
- Decision tree
- Tree traversal
- Binary expression tree

Tree Traversal

Traversal Algorithms

- A traversal algorithm is a procedure for systematically visiting every vertex of an ordered binary tree.
- Tree traversals are defined recursively.
- Three traversals are named:
- preorder
- inorder
- postorder

Preorder Traversal

Let T be an ordered binary tree with root r .
If T has only r, then r is the preorder traversal.
Otherwise, suppose T_{1}, T_{2} are the left and right subtrees at r.

The preorder traversal

1) begins by visiting r
2) traverses T_{1} in preorder
3) traverses T_{2} in preorder.

Preorder Traversal: JEAHTMY

Visit left subtree second
Visit right subtree last

Preorder Traversal

preorder (x)
if isNode(x)
then $\operatorname{print}(x)$ preorder(left (x)) preorder($\operatorname{right}(x)$)

Preorder traversal:
A, B, F, H, D, K, C, J, G, E, I

Inorder Traversal

Let T be an ordered binary tree with root r .
If T has only r, then r is the preorder traversal.
Otherwise, suppose T_{1}, T_{2} are the left and right subtrees at r .

The inorder traversal

1) begins by traversing T_{1} in inorder
2) visits r inbetween
3) traverses T_{2} in inorder.

Inorder Traversal:
A E HJMTY

Visit left subtree first
Visit right subtree last

Postorder Traversal

Let T be an ordered binary tree with root r .
If T has only r, then r is the postorder traversal.
Otherwise, suppose T_{1}, T_{2} are the left and right subtrees at r .

The postorder traversal

1) begins by traversing T_{1} in postorder
2) traverses T_{2} in postorder
3) ends by visiting r

Postorder Traversal:
A HEMYTJ

Visit left subtree first
Visit right subtree second

Contents

- Using tree structures
- Notion of tree structure
- Trees terminology
- N-ary and binary trees
- Computer representation of trees
- Binary search tree
- Decision tree
- Tree traversal
- Binary expression tree

Binary Expression Tree

Special kind of binary tree for arithmetic expressions:

1. Each leaf node contains a single operand,
2. Each internal node contains a single binary operator
3. Left and right subtrees of an operator node represent subexpressions that must be evaluated before applying the operator at the root of the subtree.

Binary Expression Tree Traversal

ROOT

INORDER TRAVERSAL: 8 - 5
PREORDER TRAVERSAL:

- 85

POSTORDER TRAVERSAL:
85 -

When a binary expression tree is used to represent an expression, the levels of the nodes in the tree indicate their relative precedence of evaluation.

Operations at higher levels of the tree are evaluated later than those below them. The operation at the root is always the last operation performed.

Infix, Postfix and Prefix Expressions

Infix, Postfix and Prefix notations are three different but equivalent ways of writing expressions:

- Infix notation: $\mathrm{X}+\mathrm{Y}$
- Operators are written in-between their operands.
- Produced by inorder traversal
- Postfix notation (also known as "Reverse Polish notation"): X Y +
- Operators are written after their operands.
- Produced by postorder traversal
- Prefix notation (also known as "Polish notation"): + X Y
- Operators are written before their operands.
- Produced by preorder traversal

Infix: (($4+2)^{*} 3$) Needs extra information to define the order of evaluation Prefix: * + 423 Operators act on the two nearest values on the right.

Postfix: $42+3$ * Operators act on values immediately to the left

Binary Expression Tree Evaluation

What value does it have?

$(4+2)^{*} 3=18$

PREORDER TRAVERSAL: * + 423
Evaluation can be done in this order, but the operation is applied only when both operands are defined

Evaluation

Infix: ((8-5) * ($4+2$) / 3)) easy to read, hard to evaluate
Prefix: *-85/+423 complex to evaluate
Postfix: 85-42+3/* has operators in order used for evaluation

Infix:

$$
((8-5) *((4+2) / 3))
$$

Prefix:
Postfix:
*-85 /+423
85-42+3/*
evaluate from right evaluate from left

