

Geometric Modeling

Solid Modeling

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

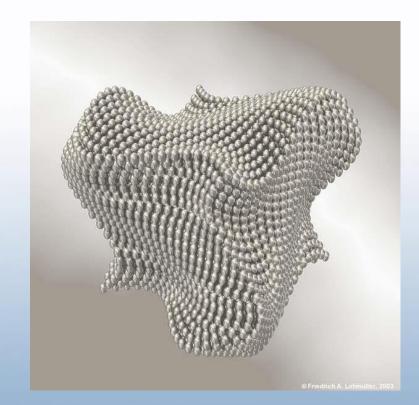
© 2004 Tor Olav Kristensen

www.povcomp.com/hof/Villarceau_Circles-CSG.html

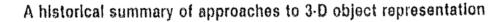
- 1. Characterization of representation schemes for solids
 - "Abstract solid"
 - Definitions
 - Formal properties of representations
 - Informal properties

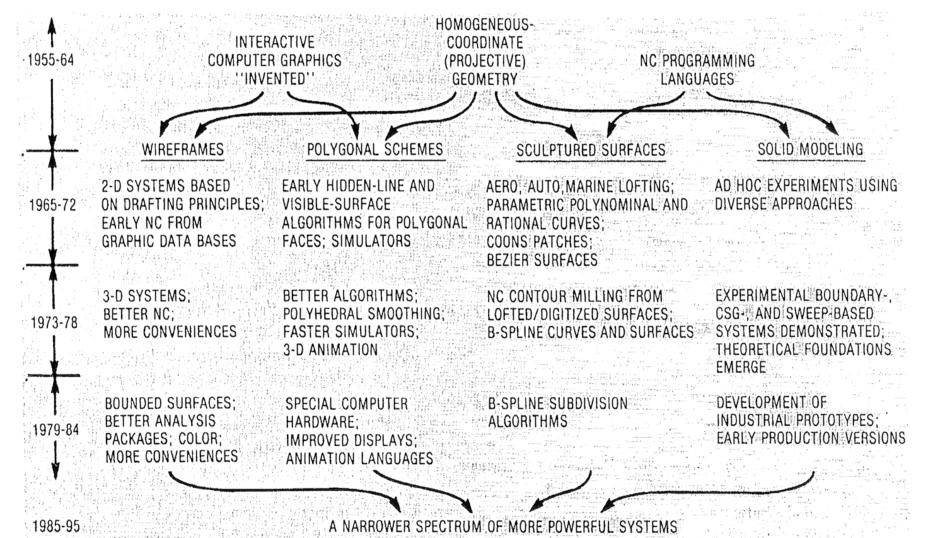
The svLis model of the Great Bath in in Aquae Sulis as it was in 200 AD

2. Schemes for representing solids


- Ambiguous schemes
- Pure primitive instancing
- Cell decompositions
- Spatial occupancy enumeration
- Constructive Solid Geometry
- Sweep representations
- Boundary representations
- Medial Axis Transforms

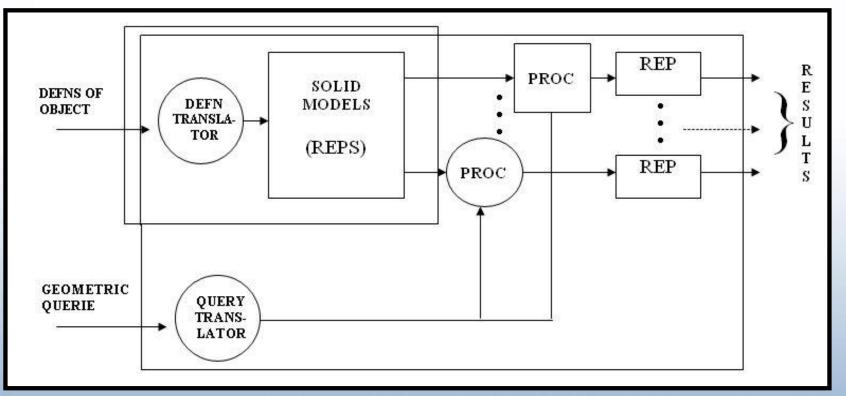
"Still with Bolts" by Jaime Vives Piqueres (2002)




- Ray representations
- Parametric function
 representations
- Real function representations
- Hybrid schemes and conversions
- 3. Solid modelling systems
- 4. References

"Dancing Cube" by Friedrich A. Lohmueller (2003)

A. A. G. Requicha, H. B. Voelcker, 1982


Solid Modelling System

A solid modelling system has four primary components [Requicha, 1980]:

- Symbol structures which represent solid objects;
- Processes which answer geometric questions (such as "What is the volume?") using the symbol structures;
- Input facilities for creating and editing object representation;
- Output facilities and representations of result.

Solid Modelling System

Requicha, Comp. Surveys, p.438

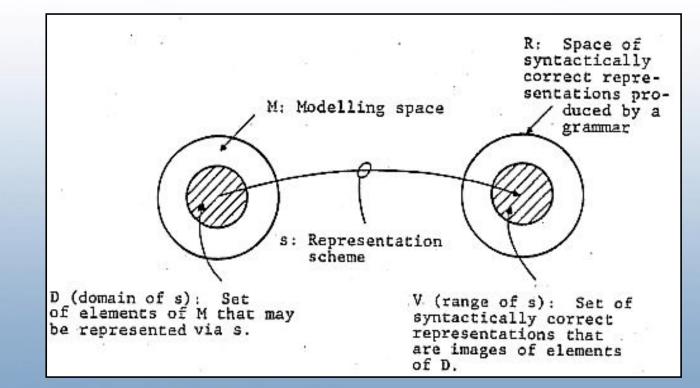
Solid modelling system is a subsystem which provides entering, storing and modifying object representation.

Abstract solid

Properties that should be captured by the notion of "abstract solid":

- Rigidity: An abstract solid must have an invariant shape which is independent of the solid's location and orientation.
- Homogeneous three dimensionality: A solid must have an interior, and a solid's boundary cannot have isolated or dangling portions.
- Finiteness: A solid must occupy a finite portion of space.

Abstract solid


- Closure: Rigid motions (translations and rotations) or operations that add or remove material (settheoretic operations) must produce another solid.
- Finite describability: There must be some finite aspect of 3D models of solids (a finite number of "faces") to make them representable in computers.
- Boundary determinism: The boundary of a solid must determine unambiguously what is "inside" the solid.

Representation scheme

A representation scheme establishes a correspondence between *M* and *R*.

It is defined as relation s: $M \rightarrow R$

Abstract solid : r-sets

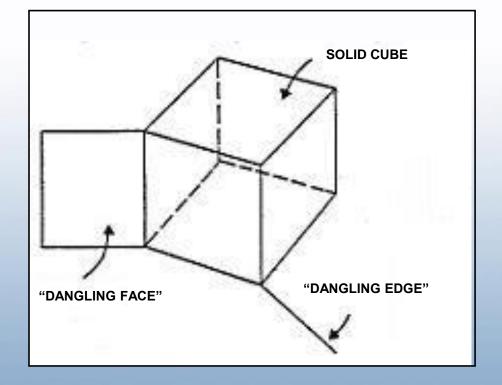
Suitable models for solids are **r-sets** that are bounded, closed, regular, and semi analytic subsets of 3D Euclidean space (E³).

- A bounded set

occupies a finite portion of space.

- Closed set

The set is closed if it contains its boundary.

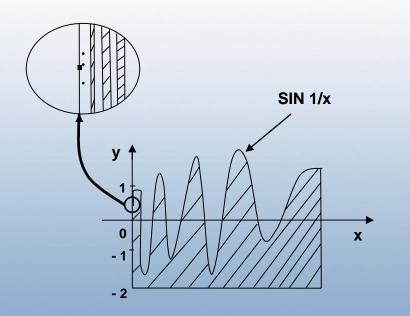


Abstract solid : r-sets

- Reqular

It is a closed set. It contains its boundary.

It is not a regular set because its boundary has dangling portions that are not adjacent to the set's interior.


Requicha, Comp. Surveys, p.440

Abstract solid : r-sets

- Semi-analytic set

This set is not semianalytic because its top face is ill-behaved; it oscillates infinitely as it approaches the left face. EXPANDED VIEW OF NEIGHBORHOOD SHOWING ALTERNATING SLICES OF "AIR" AND "MATERIAL"

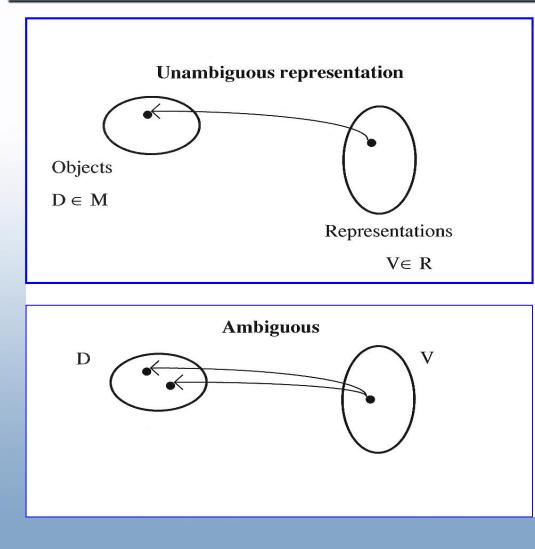
Representation scheme

Syntactically correct representations are finite symbol structures constructed according to syntactical rules.

- The collection of all syntactically correct representations is called a representation space *R*.
- Abstract solids (r-sets) are the elements of a mathematical modelling space M.

Formal properties of representations

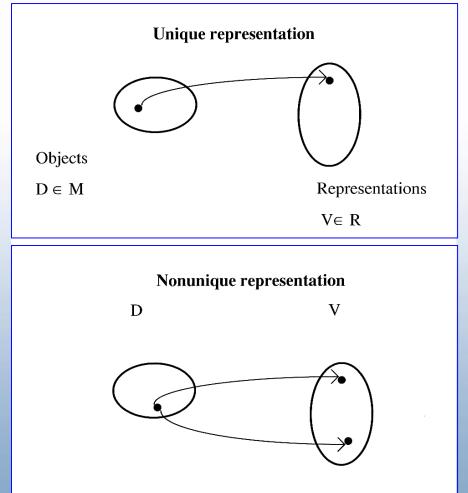
• Domain


The domain is the set of solids representable in the representation scheme (its descriptive power).

• Validity

A symbol structure, which corresponds to a nonsense object, should not exist.

Completeness
 (non-ambiguity)


A representation $r \in V$ is unambiguous if it corresponds to a single object in D. A scheme is complete or unambiguous if all of its valid representations are unambiguous.

Formal properties of representations

 Uniqueness. A scheme is unique if for one object there is one and only one representation.

Representational schemes which are both unambiguous (complete) and unique are highly desirable because they are one-to-one mappings.

Informal properties of representation schemes

• Conciseness.

This refers to the "size" of representations in a scheme (proportional to required memory). Compare: equation and polygonal model.

• Ease of creation.

Concise representations generally are easier to create. Input subsystems are needed to help users to create representations.

Informal properties of representation schemes

• Suitability for applications.

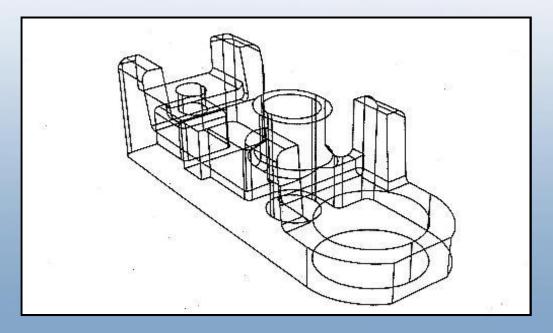
Example: Roman numbers are not convenient for arithmetic operations. In solid modelling, no single representation is uniformly "best".

Multiple representations are suitable for general-purpose solid modelling systems.

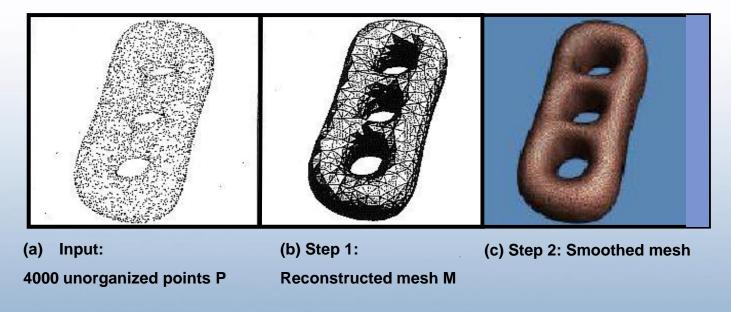
Ambiguous schemes

1) Engineering drawings (drafts).

No formal definition as a representation scheme.


More formal corresponding schemes:

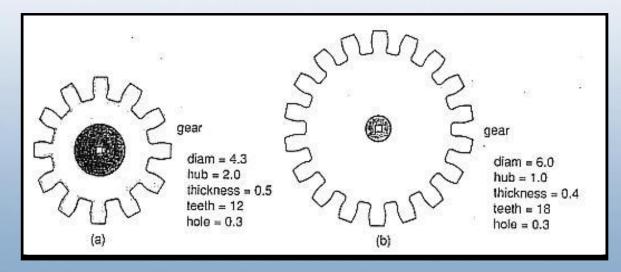
• Collections of planar projections. Mapping to a 3 solid is needed.


Suitable collections of 3D entities. Selection of "edges" leads to wire frame representations.

Ambiguous Schemes

2) Measurements of physical solids.

A solid is represented by a set of coordinates of points lying on the boundary or inside the object.



Pure Primitive Instancing

The modelling system defines a set of primitive 3D solid shapes for the specific application area:

primitive_i $(a_1, a_{2, \dots}, a_k)$

- Primitive with parameters define a family of parts;
- Primitives may include complex objects (gears, bolts, etc.);

Two gears defined by primitive instancing.

Pure Primitive Instancing

- No operations to form a new more complex object;
- Only one way to create a new kind of object - to write the code that defines it;
- Programs to draw or to calculate mass properties must be written individually for every primitive.

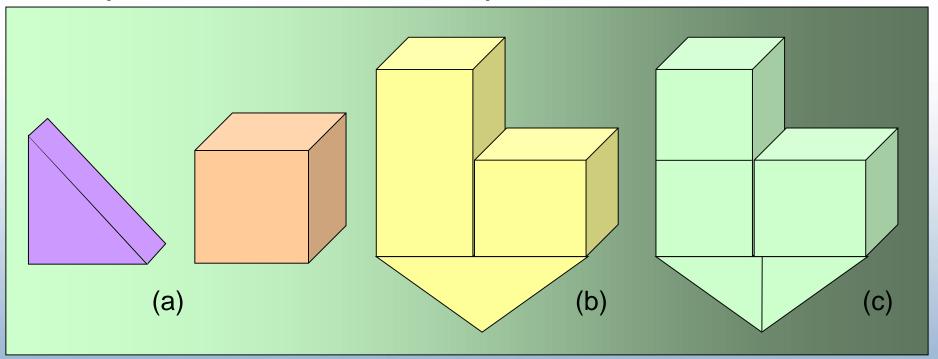
Pure primitive instancing

- Properties:
- Unambiguous.
 A set of parameters defines one solid.
- Unique.
 - For a solid only one set of parameters exists.
- Concise and easy to validate.

Pure primitive instancing

Properties

- Easy to use.
- Domains are small enough to be covered by a small catalog of primitives with small number of parameters.
- Efficient in specific applications but allow no uniform treatment.


Cell decompositions

- Parameterized set of primitive cells that are often curved
- Constructing complex object by "gluing" primitive cells together
- Restrictions on the "glue" operation often require that two cells share a single point, edge, or face

Cell decompositions

• Representation is not unique:

The cell shown in (a) may be transformed to construct the same object shown in (b) and (c) in different ways.

Cell decompositions

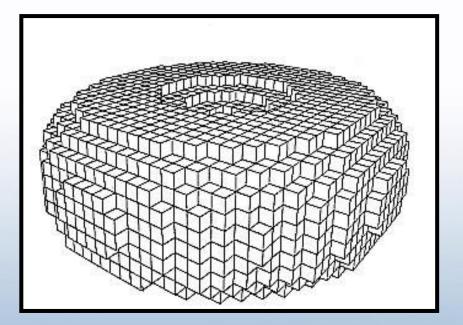
Properties

- Unambiguous
 - A set of cells defines one solid
- Validity
 - is computationally expensive to establish
- Not concise
- Not easy to create

Properties

Convenient

for computing topological properties:


- "one-piece" detection (connectivity)
- check "voids" or "holes"

Cell decomposition is used in 3D finite element methods (FEM) for the numerical solutions of differential equations.

Spatial occupancy enumeration

- Special case of cell decomposition with identical cells arranged in a fixed, regular grid
- The cells are often called voxels
- The most common cell type is the cube, and the representation of space as a regular array of cubes is called a voxel array (a cuberrile)

Torus represented by spatialoccupancy enumeration.

- For every cell, only its presence or absence in the grid is defined
- A cell is presented in the grid if it is occupied by the object
- Disadvantages:
 - approximate model, no concept of "partial occupancy"
 - memory consuming (up to n3 cells)

Spatial occupancy enumeration

Properties

- Unambiguous.
 - A set of voxels defines one solid.

• Unique.

For a solid only one set of voxels with the given grid step exists.

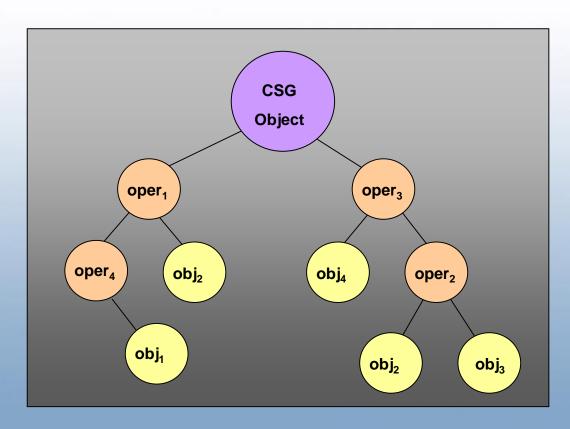
- Easy to validate.
- Not concise (verbose).
- Efficient in applications where objects are boxlike (architecture) or extremely irregular (biomedical).

2. Schemes for representing solids

- Ambiguous schemes
- Pure primitive instancing
- Cell decompositions
- Spatial occupancy enumeration
- Constructive Solid
 Geometry
- Sweep representations
- Boundary representations
- Medial Axis Transforms

"Still with Bolts" by Jaime Vives Piqueres (2002)

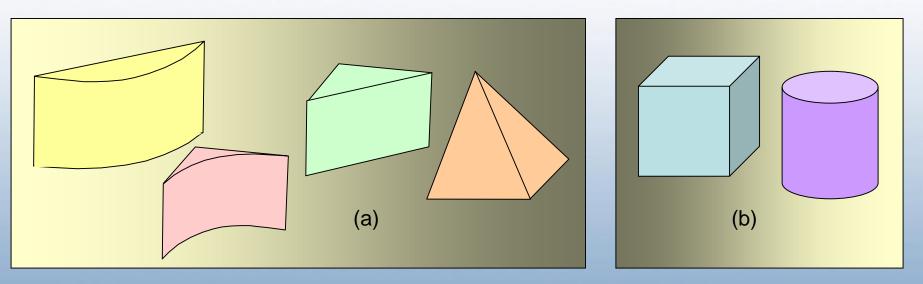
Constructive Solid Geometry (CSG)


- CSG is based on a set of 3D solid primitives and regularized set-theoretic operations
- Traditional primitives: block, cylinder, cone, sphere, torus
- Operations; union, intersection, difference
 + translation and rotation

Constructive Solid Geometry (CSG)

CSG tree

• A complex solid is represented with a binary tree usually called CSG tree



Constructive Solid Geometry

Properties

 Domain depends on the set of primitives and on the set of operations.

Two CSG schemes having different primitives but the same domain.

Constructive Solid Geometry

Properties

• Unambiguous

A CSG tree defines one solid.

Nonunique

There are several possible CSG trees for one solid.

Validity

Any syntactically correct CSG tree is **valid**, if the primitives are r-sets.

- CSG tree based on unbounded primitives may represent bounded sets and therefore be invalid.

Concise

if primitives are well matched to the domain

• Humans can easily create CSG representations

• Efficient

for rendering and computing integral properties; not efficient for line drawings and certain types of graphic interactions ("pick an edge").

- A set of all points visited by an object A moving along a trajectory B is a new solid, called a sweep.
- Translational sweeping (extrusion):
 2D area moves along a line normal to the plane of the area.

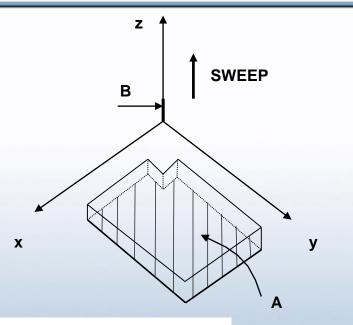



Image by Martin Culpepper, 1999

• Rotational sweeping is defined by rotating an area about an axis

 Sweeps with a generating area changing in size, shape or orientation and following an arbitrary curved trajectory are called generalized cylinders.

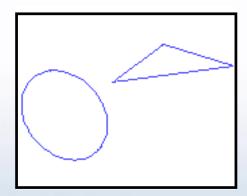
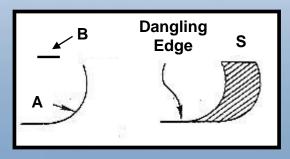


Image by Martin Culpepper

Problems: sweeping by moving solid, selfintersections, CSG operations on sweep.



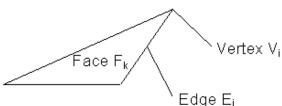
Properties

• Unambiguous

A moving object + a trajectory define one solid

- Not unique
- General validity conditions for sweep representations are unknown. General sweeping may produce non-regular sets.

Requicha, Comp. Surveys, p.451



- Applications of sweeping by a moving solid: material removal (NC machining), dynamic interference of solids.
- Sweeping by a moving solid: lack of known algorithms for computing properties.

Boundary representation

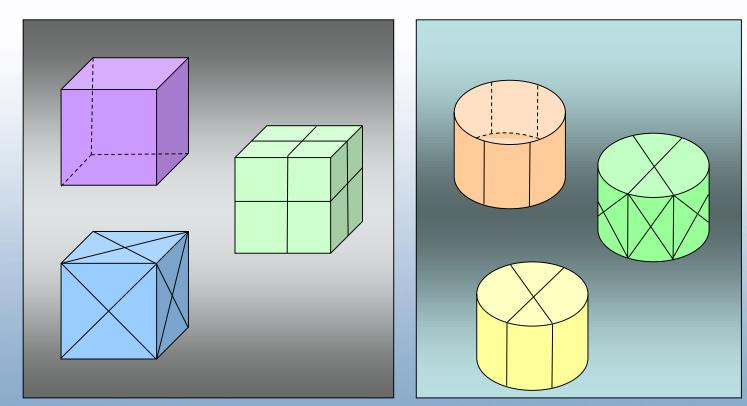
Example: A boundary representation for a cube

Boundary representation

Properties

Domains

are as reach as those of cell-decomposition or CSG schemes. Given a CSG scheme it is always possible to design BRep scheme with the same domain.


Unambiguous

if faces are represented unambiguously.

Properties

• Not unique

Properties

• Validity

control requires expensive calculations.

- Not concise (verbose)
 More than 10 times longer than corresponding CSG.
- Difficult
 - for humans to construct.
- Efficient

in line and shaded drawings, graphic interaction and topological applications.

ARISTIDES A. G. REQUICHA Representations for Rigid Solids

SUMMARY OF REPRESENTATION SCHEME PROPERTIES AND APPLICABILITY

PROPERTIE						5		APPLICATIONS											
Schemes		DOMAIN	VALIGITY	COMPLETENESS	UNIQUENESS	CONCISENESS	EASE OF CREATION	NULL	OBJECT EQUALITY	LINE DRAWINGS	GRAPHIC INTERACTION	SHADED DRAVIINGS	MASS PROPERTIES	HOMOLOGICAL PROPERTIES	FINITE ELENENT ANALYSIS	INTERFERENCE ANALYSIS	ROUGH MACHINING	FINISH MACHINING	NC TAPE VERIFICATION
PRIMITIVE INSTANCING			G	G	G	G	. G	G	G	G		?	G	G	?		G	G	G
SPATIAL ENUMERATION			.G	G	G			C	G	?	?	?	G	G	G	· G			
CELL DECOMPOSITION		Ġ		G				G		?	?	?	Р	C	Р	?	?	?	?
CSG	GENERAL 1/2 SPACES	G,		G				?	?		P	?	?			Р	P	?	Р
	BOUNDED PRIMITIVES	С	G	G		G	G	?	?		P	?	?			Р	P	?	Р
SWEEF	TRANSLATIONAL & ROTATIONAL		G	G	?	G	G	G	?	G	G	?	G	?	Р				
	GENERAL	G		G				G											
BOUNDARY		G		G	?			G	?	G	G	Р	?	Р				Р	

KEY:

G = GOOD P = PROMISING

? = UNCLEAR

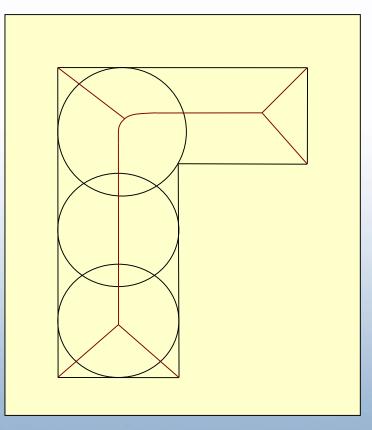
BLANK= UNPROMISING OR POOR

H.Voelcker, 1995

A Taxonomy of Complete Representation Schemes for Solids

< H. Voelcker: 9/93; rev. 2/94, 2/95, 6/95 >

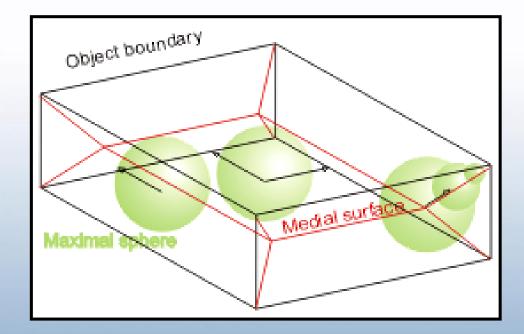
PARADIGM	FAME.Y NAME	VARIANT	MATHEMATICAL MECHANISM	ACCESSIELE ATTRIBUTES	SPECIAL PROPERTIES	
Instantiation	Templates1		Special-Case Formulae			
	Spatial	Linear subdivision of space \Rightarrow rectilinear grids of equal-size cells	Union of Quasi-Disjoint Solid Cells		Spatial	
	Enumeration ²	Recursive subdivision ⇒ hierarchically graded cells (quadtrees, octrees)	Solid = $\bigcirc C_i$ where	Interior, Discretized into	Addressability	
Cell Composition (Gluing)	Cell Decomposition	Simplicial or Cell Complexes, elements produced by object partitioning (e.g. triangulation)	$C_i \cap_n C_j = \emptyset, i_j$	Cells	2	
	Boundary	Exact boundaries	Union of Boundary Cells Solid = ∪ Face _i	Boundary;	e.	
	Represenations (B-reps)	Linear approximations ('tilings', 'facets')	δ Face = \bigcup Edge _j (Solids thru boundary determ inism)	Surface 'Features'		
Boolean	Constructive Solid	Halfspace primitives	Regularized	Solid primitives;	Recursive	
Composition	Geometry (CSG)	Bounded solid primitives	boolean composition	syntactic structure	partitioning	
·	Sweep	Simple sweeps: S constant, M a single rotation or translation	'Infinite Union': Sweep(S, M(t)) =	Generator	(Limited domains)	
Generation	Representations	General sweeps	\cup S(t _i) @ M(t _i), \forall t _i e [interval]	Elements (S, M)		
	Medial Axis Transforms (MATs) ³		∪ Spine(p)⊕ Sphere(R(p))	Spine (skeleton); Radius function		
Spatial	Ray Representations ³		Induced cell decompositions	Ray-sampled interior	Directional sampling	
Sampling	Param etric Sample Sets ³		Interpolation	Sampled boundary		
Real and	Param etric- function Representations ³		Homeomorphic mapping over finite domeins	Interior	(Limited domains)	
Vector Functions	Real-function Representations ³	Differentiable Indicator Functions	$\begin{array}{l} f(p) > 0 \implies p \in iS \\ f(p) = 0 \implies p \in S \\ f(p) < 0 \implies p \in S \end{array}$	Point classifications	Boolean composition through arithmetic operation	


¹ Called 'Pure Primitive Instancing' in Requicha's paper in ACM Computing Surveys, December 1980.
² Called 'S patial Occupancy Enumeration', without linear and hierarchical distinctions, in Requicha's 1980 paper.

³ Not acknowledged in Requicha's 1980 paper.

Medial axis representations

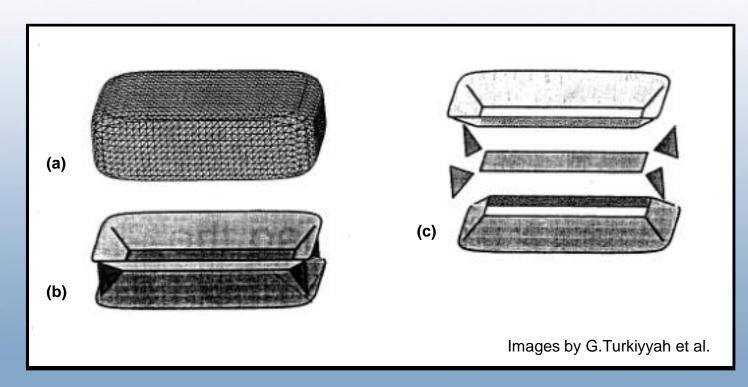
The medial axis of a 2D object is defined as the closure of the locus of centers of maximal inscribed disks. A disk is maximal if no other disk contains it.


Hoffmann "Solid modelling" Overview

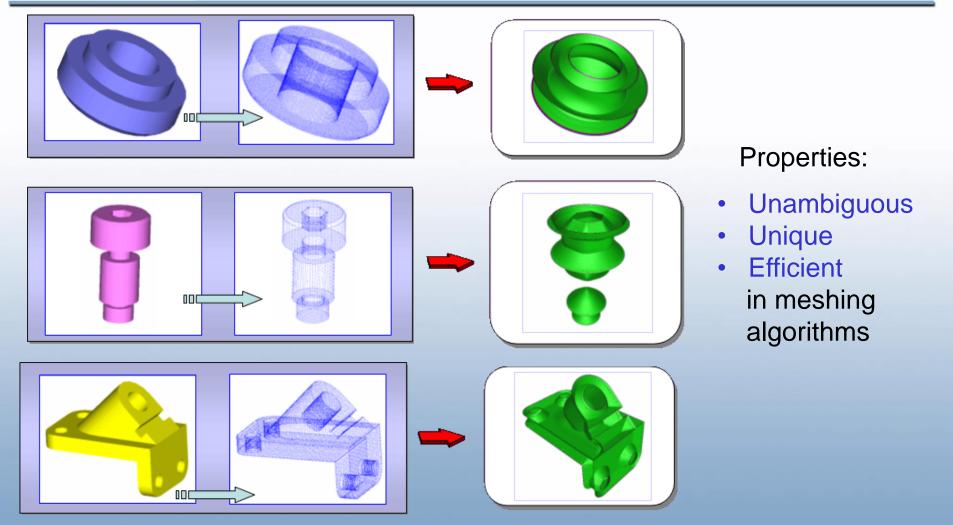
L-shaped domain and associated medial axis. Some maximal inscribed circles contributing to the medial axes are also shown.

Medial axis representations

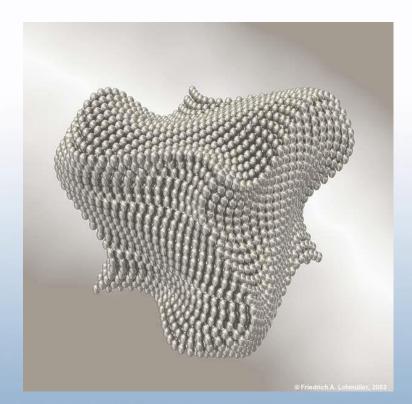
The medial surface of a 3D solid is the closure of the locus of centers of maximal inscribed spheres.


Finite Element Modelling Group, Queen's University, Belfast

Medial axis representations

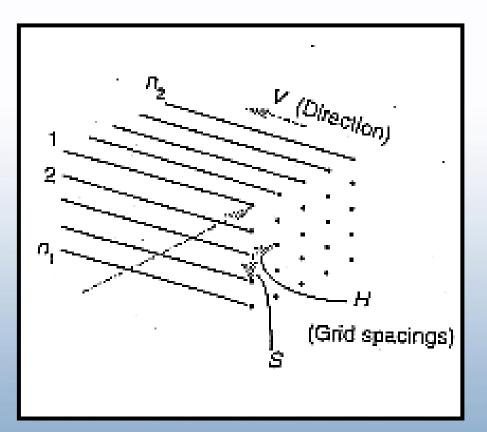

Morphology of 3D skeleton

(a) super-ellipsoidal block;(b) skeleton of block with various element labeled;(c) exploded skeleton showing separated patches.


Medial axis representations

Contents

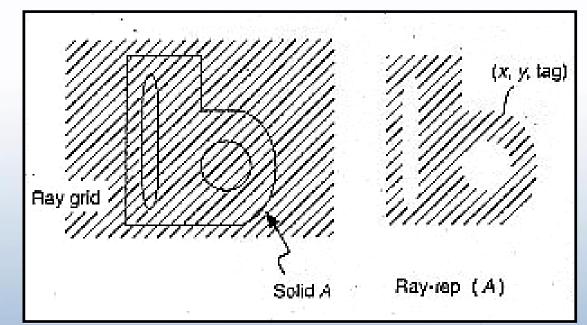
- Ray representations
- Parametric function representations
- Real function representations
- Hybrid schemes and conversions
- 3. Solid modelling systems
- 4. References



"Dancing Cube" by Friedrich A. Lohmueller (2003)

Ray representations

A ray grid is a finite set of regularly spaced parallel lines with an associated direction V.



Ray representations

A ray representation of a solid is a set of segments resulting from the intersection of the ray grid with the solid.

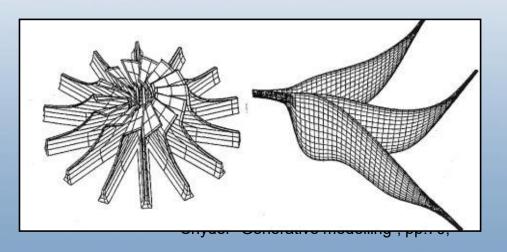
A ray-rep might also contain tags,

descriptive symbolic information appended to the segments. Tags can identify the primitive half-spaces in solid's CSG or faces in its B-rep.

Ray representations

Properties:

- Unambiguous
 under suitable conditions and with appropriate tags. Can be converted exactly from and to CSG and B-rep
- Not unique
 Depends on grid spacing


Parametric function representations

Shapes are represented by multidimensional, continuous, piecewise-differentiable parametric functions:

 $F: R^n \rightarrow R^m$

where Rⁿ is parameter space and R^m is object space.

For n=2, m=3 [x(u,v), y(u,v), z(u,v)] defines a surface in 3D space.

Parametric function representations

Properties

- Extension and generalization of sweeping
- Unambiguous, non unique representation
- Compact and easy to create
- Efficient algorithms with the use of interval analysis

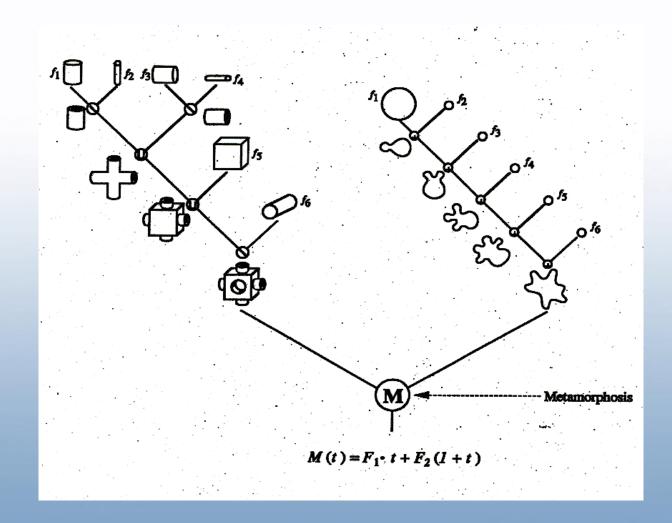
Real function representations

An object is defined by a single continuous real function of several variables:

 $f(x_1, x_2, ..., x_n) \ge 0$

Real function representations

• A function f can be defined analytically, with an evaluation algorithm, or with sampled values and an appropriate interpolation procedure.



Function representation FRep

- Uniform representation of multidimensional objects defined as $F(X) \ge 0$
- Function *F(X)* evaluation procedure traversing the construction tree structure
- Leaves: primitives
- Nodes: <u>operations</u> + <u>relations</u>
- System extensibility

Construction of FRep metamorphosis

Real function representations

Properties

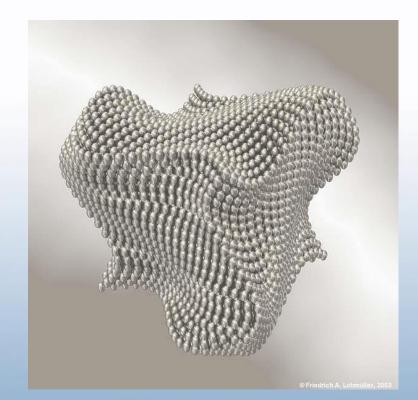
- Closed under the arithmetic, set-theoretic, Cartesian product, projection and other operations.
- The abstraction level is higher than that of other known representations.

Combinations of the following modelling styles are supported: CSG, sweeping, implicit and volumetric objects.

Real function representations Properties

• Unambiguous

A function defines one object


- Not unique for example, k ⋅ f ≥ 0
- Concise and easy to create
- Efficient

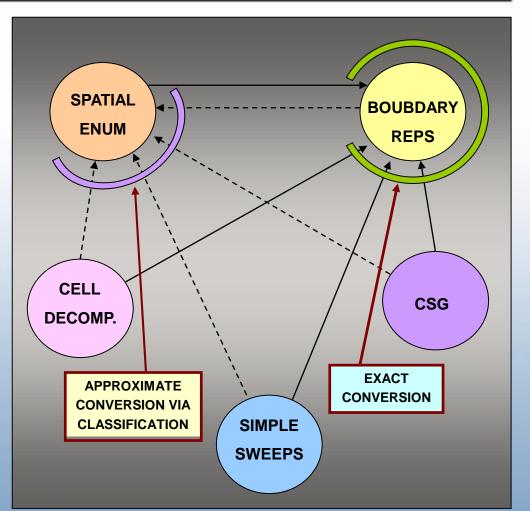
in modelling highly complex objects

Contents

- Ray representations
- Parametric function representations
- Real function representations
- Hybrid schemes and conversions
- 3. Solid modelling systems
- 4. References

"Dancing Cube" by Friedrich A. Lohmueller (2003)

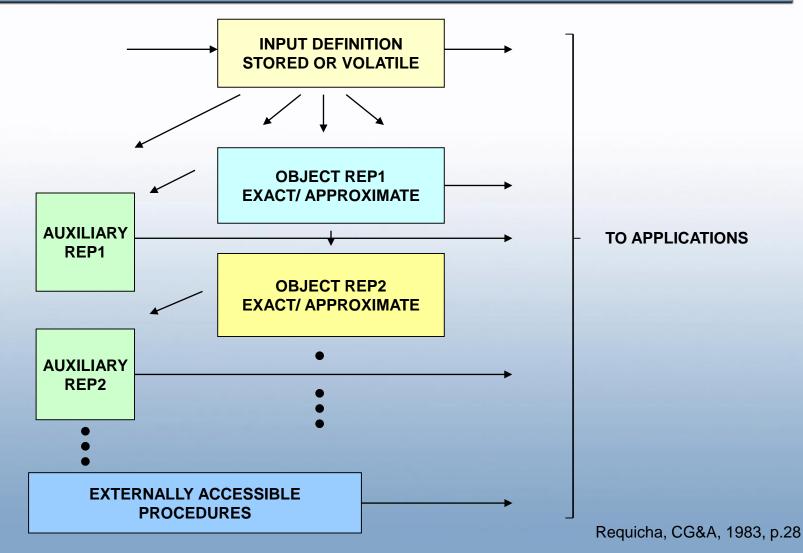
Hybrid schemes and conversions


- Hybrid, or non-homogeneous, representation schemes may be designed by combining several schemes:
- 1) CSG/ boundary hybrid: CSG-like trees whose leaves are primitive solids or B-rep non-primitive solids.

Is used as the basis for the input language of some systems.

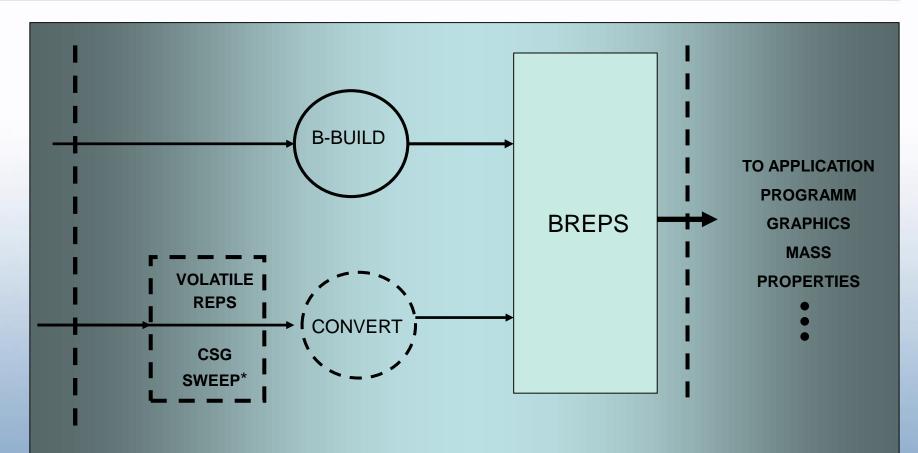
Hybrid schemes and conversions

 2) CSG/sweep hybrid: CSG-like trees whose leaves may be solid-sweep representations.
 Useful in numerically controlled (NC) machining and computer vision.

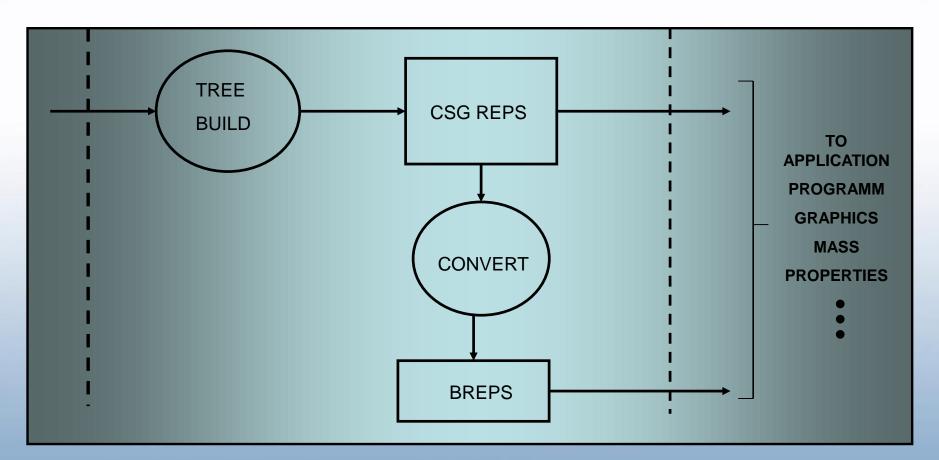

Hybrid schemes and conversions

- Reasons for the lack of bidirectional exact conversions:
- 1) schemes such as sweeps have smaller domain than CSG, B-rep, or cell decompositions;
- 2) algorithms are not known.
- Exact conversion from CSG to B-rep ("boundary evaluation") requires nontrivial algorithms.

Architectures of solid modelling systems



- A solid modelling system is regarded as
- 1) a specific collection of representations (exact, approximate, auxiliary) with at least one being valid and complete;
- 2) a collection of procedures for managing representations, conversions, and other geometrical calculations.
- Applications: graphics, mass properties calculations, finite-element meshing, interference checking and path planning, mechanism simulation, rapid prototyping, manufacturing, data storage and exchange.


Single representation and hybrid systems

Single (boundary) representation systems

Single representation and hybrid systems

Hybrid CSG/ BRep systems

SYSTEM		PRIMARY REP SCHEME	DOMAIN (DEFINED BY HALFSPACES)	OTHER CONSISTENT REPS	INPUT BASED ON	INPUT MODALITIES
SHAPES TIPS		CSG: HALFSPACES	QUAD ''ARBITRARY''		CSG CSG	SC;T/I;IG* T/B
GDP/GRIN PADL-1 PADL-2 SYNTHAVISION	}	CSG: BOUNDED PRIMITIVES	QUAD PL & CYL (⊥) QUAD QUAD, SS	≃ B-REP B-REP B-REP WIREFRAME	CSG CSG CSG CSG	SC;IG T/I SC;T/I T/B
GMSOLID		HYBRID CSG/B-REP	QUAD	B-REP	CSG, SWEEP*	IG
U.M./BORKIN BUILD-2 CADD COMPAC DESIGN EUCLID GLIDE MEDUSA PROREN-2 ROMULUS		B-REP B-REP B-REP B-REP B-REP B-REP B-REP B-REP B-REP B-REP	PL QUAD QUAD, SS QUAD QUAD ≃QUAD PL ≃QUAD, SS QUAD QUAD		CSG, SWEEP* CSG, EOP SWEEP* CSG, SWEEP* CSG, SWEEP* CSG, SWEEP*, EOP CSG, SWEEP* CSG, SWEEP* CSG, SWEEP* CSG, SWEEP*, EOP	T/I;IG* SC;T/I IG T/B? IG T/I;IG? SC;T/I IG T/I SC;T/I
8 - -	PL QUAD SS ⊥ ≃ SWEEP*	= SCULPTURED SURFACES = ORTHOGONAL POSITIONING = APPROXIMATE		SC = SUBROUTT/I = TEXT/INT/B = TEXT/B/IG = SOPHIST	SC = SUBROUTINE CALL T/I = TEXT/INTERACTIVE ORIENTATION T/B = TEXT/BATCH ORIENTATION IG = SOPHISTICATED INTERACTIVE GRAPHICS	

Representational facilities of selected geometric modeling systems.

٠

Kernel modelers

- Parasolid (EDS Unigraphics, Cambridge, UK) BRep solid modeler supporting free-form surfaces (development of Romulus) http://www.eds.com/
- ACIS (Spatial Technology, USA) B-rep object-oriented toolkit (development of BUILD) http://www.spatial.com/
- Designbase (Ricoh, Japan) B-rep solid modelling library with free-form surfaces
 www.ricoh.co.jp/designbase/
- SVLIS (Information Geometers, UK) CSG object-oriented kernel modeller
 http://www.bath.ac.uk/~ensab/G_mod/Svlis/svlis.html

B-rep modelers

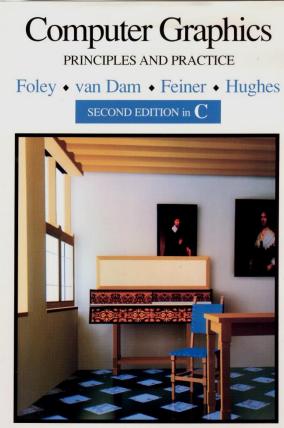
- CATIA (Dassault, France / IBM) http://www.catia.ibm.com/
- AutoCAD Release (Autodesk, USA) based on ACIS <u>http://www.autodesk.com/</u>
- SolidWorks (SolidWorks, USA) PC+Windows interactive system based on Parasolid <u>http://www.solidworks.com/</u>

CSG based hybrid systems

 Ray Casting Engine RCE (Duke/ Cornell Universities, USA) VLSI parallel special-purpose computer based on CSG/ ray-rep

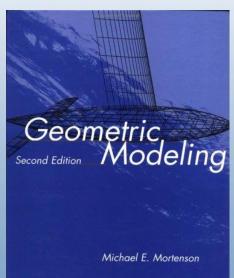
http://www.cs.duke.edu/~kedem/RCE/RCE.html

- POVRay CSG/B-rep hybrid modeller for photorealistic rendering <u>http://www.povray.org</u>
- BRL-CAD (USA Army) CSG/ BRep solid modelling system <u>http://www.brl-cad.org</u>



FRep based systems

- HyperFun (Aizu-Hosei, Japan; Bournemouth, UK) specialpurpose high-level language and tools http://www.hyperfun.org
- Symvol for Rhino (Uformia, Norway) FRep plug-in to Rhinocerous CAD system http://uformia.com/products/symvol-for-rhino/


• James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Computer **Graphics:** Principles and Practice (2nd Edition in C), Addison-Wesley, Reading, MA, 1997.

THE SYSTEMS PROGRAMMING SERIES

- Aristides A. G. Requicha "Representations of rigid solids: theory, methods, and systems", computing Surveys, vol. 12, No. 4, 1980, pp. 437-465.
- A. A. G. Requicha, H. B. Voelcker "Solid modelling: a historical summary and contemporary assessment", IEEE Computer Graphics and Applications, vol.2, No.2, 1982, pp. 9-24.
- Michael E. Mortenson, Geometric modelling, John Wiley and Sons, 1985.
 Second edition, 1997.
 Third edition, 2006.

- Christoph M. Hoffmann "Geometric and Solid modelling. An Introduction", Morgan Kaufmann Publishers, 1989, 338 p.
- A.A.G. Requicha, J.R. Rossignac "Solid modelling and beyond", IEEE Computer Graphics and Applications, vol.12, September, 1992, pp.31-44.
- Snyder, John M., Generative modelling for Computer Graphics and CAD: Symbolic Shape Design Using Interval Analysis, Academic Press, 1992.

- Menon J., Marisa RJ, Zagajac J., More powerful solid modelling through ray representations, IEEE Computer Graphics and Applications, vol.14, No.3, 1994, pp.22-35.
- J. Rossignac. Through the cracks of the solid modelling milestone, From Geometric modelling to Advanced Visual Communications, S.Coquillart, W. Strasser, P. Stucki, Springer Verlag, pages 1-75, 1994.

- Herbert Voelcker "Support for solid freeform fabrication", NSF Workshop on Design Methodologies for Solid Freeform Fabrication, 1995.
- Christoph M. Hoffmann, Jarek Rossignac: A Road Map To Solid modelling, IEEE Trans. Vis. Computer Graphics, Vol.2, No.1, pp. 3-10,1996.
- A.A.G. Requicha "Geometric modelling: A First course", 1999.
- Martin Culpepper, Understanding how things work, Lecture course, MIT,1999.

Words of wisdom

"...we are geometricians only by chance" Dr. Johnson

"Without geometry, life is pointless"

