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B-rep notions

In the boundary representation, a solid is

represented by segmenting its boundary

into a finite number of bounded subsets

usually called “faces” or “patches”, and

representing each face by its bounding

edges and vertices.



B-rep notions

• This description has two parts, a topological 
description of the connectivity and orientation 
of vertices, edges, and faces, and a
geometric description for embedding these 
surface elements in space.

• The topological description specifies vertices, 
edges, and faces abstractly, and indicates their 
incidences and adjacencies.

• The geometric description specifies, for 
example, the coordinates of vertices or the 
equations of the surfaces containing the faces.



Historically, B-rep evolved from a description of 

polyhedra in computer graphics:

face

edge

vertex

Fig. vertex-edge-face from CG course

B-rep notions



B-rep notions

Historically, B-rep evolved from a description of 

polyhedra in computer graphics:

Hearn/ Baker, p.307



Example: A boundary representation for a 

cube

FACES 

(6)

EDGES 

(12)

VERTE-

XES

(8)

Topological 

structure

B-rep notions



BRep Properties

 Domains

are as reach as those of other 

representations.  

 Unambiguous

if faces are represented unambiguously.



Properties

 Not unique



Properties

 Validity

control requires expensive calculations.

 Not concise (verbose)

More than 10 times longer than 
corresponding CSG.

 Difficult

for humans to construct.

 Efficient 

in line and shaded drawings, graphic

interaction and topological applications.



Vertex - edge - face

Requicha, Comp. surveys, 1980, p.453

What are the faces?

• Types: polygonal and curved faces

• Curved faces can be approximated by polygons or 

represented by parametric (implicit) surfaces



B-rep example

Solid BRep

Requicha, IEEE CG&A, 1983, p.26



2-manifold

• Every point on a 2-manifold has a 

neighborhood of points around it that is 

topologically the same as a disk in the 

plane.

• There is a continuous one-to –one 

correspondence between the 

neighborhood and the disk.



2-manifold

Example: if more than two faces share an edge (Figure c), 

any neighborhood contains points from each of those faces. 

Thus, the surface is not a 2-manifold.

On a 2-manifold, each point, shown as a black dot, has a neighborhood of 

surrounding points that is a topological disk, shown in gray in (a) and (b).  

(c) If an object is not a 2-manifold, then it has points that do not have a 

neighborhood that is a topological disk.



Manifold or nonmanifold?

• Many BRep systems support only solids 
whose boundaries are closed, oriented 2-
manifolds in 3D space. Thus surfaces that 
intersect or touch themselves are 
excluded.

• A manifold surface is orientable if we can 
distinguish two different sides (sphere, 
torus, etc.). Mobius strip and Klein bottle 
are nonorientable surfaces.

2-manifold



Manifold or nonmanifold?

• Regularized set-theoretic operations on two manifold 

objects may result in a nonmanifold object. For example, 

the union of two L-brackets: 

Hoffmann, p.38 

(a)                                        (b)                                    (c)



Manifold or nonmanifold?

Three approaches to treating non-
manifolds:

• 1. Objects must be 
manifolds. Operations on 
solids with nonmanifold 
results are considered an 
error.

• 2. Objects are topological 
manifolds, but geometric 
description permits 
coincidence of 
topologically separate 
structures (b,c).

• 3. Nonmanifold objects are 
permitted.

(a)                     (b)                      (c)



Conditions for B-rep faces

Faces should satisfy the following conditions:

• 1. A finite number of faces defines the boundary of a solid.

• 2. A face of an object is a subset of the object’s boundary.

• 3. The union of all faces of an object defines its boundary.

• 4. A face is itself a subset or limited region of some primitive 
surface.

• 5. A face must have a finite area and must be dimensionally 
homogeneous (must not have dangling edges or isolated 
points).



Conditions for B-rep faces

Faces must be represented unambiguously. 

What is the face below?

Bounding edges of the face are oriented according to some convention. 

For example, a face-bonding curve is parameterized in a consistent 

direction so that the vector n  t points to the face side of the curve.

Requicha, comp. surveys, 1980, p.453

Mortenson, p.471



Polyhedra and 

Euler’s Formula

 A 3D polyhedron is a solid that is bounded 

by a set of polygons:

- each edge connects two vertices and is 

shared by exactly two faces

- at least three edges meet at each vertex

- faces do not interpenetrate.



Polyhedra and Euler’s Formula

 A simple polyhedron can be deformed into 

a sphere (no holes).

Foley, p.545 

Some simple polyhedron with their V, E and F values.



Polyhedra and Euler’s Formula

 The BRep of simple polyhedron 
satisfies Euler’s formula:

V – E + F = 2

where 

V is the number of vertices

E is the number of edges

F is the number of faces.



Generalized Euler’s Formula

 The BRep of 2-manifolds that have faces with 
holes satisfies the generalized Euler’s formula:

V – E + F –H = 2 ( C – G )

where 

V is the number of vertices

E is the number of edges

F is the number of faces

H is the number of holes in the faces

C is the number of separate components (parts)

G is the genus (for a torus G = 1)



Topological relationships 

in BRep

A polyhedron 

has nine 

classes of 

topological 

relationships

between pairs 

of elements: 

vertices, 

edges, and 

faces.

Mortenson, p.426



Topological relationships in B-rep

Different applications need different 

adjacency information:

- V: {V}, E: {V}, F: {V} in wireframe (vector) 
graphics to know how vertices are joined

- V: {F} in set operations to know the ring of 
faces around the vertex

- F: {F} adjacency among faces is needed 
in Euler operators.



Winged-edge structure

This data structure represents the boundary of a 
manifold polyhedral object. The topological 
information is as follows:

 Each face is bounded by a set of disjoint edge 
cycles. One cycle is the outside boundary of the 
face, the others bounding holes.

 Each vertex is adjacent to a circularly ordered 
set of edges, so the vertex table specifies one of 
these edges for each vertex.



Winged-edge structure

 For each edge the following 
information is given (see figure): 

1) Incident vertices (V1, V2)

2) Left and right adjacent face (F2, F1)

3) Two edges that share V1 (E2, E3)

4) Two edges that share V2 (E4, E5)

This structure makes it possible to 

determine in constant time which 

vertices or faces are associated with

an edge.

Foley, p.545 



Local modifications

Foley, p.544                                                

Hoffmann, p.18

(a) An object on which tweaking 

operations are performed to move, 

(b) vertex A, (c) edge AB, 

(d) face ABC

Extruding a Face

Altering Edge 

and Face Shape



Euler operators

(a, b) a cubical polyhedron is correctly modified;

(c) the result is not a polyhedron because edges (1,5) and 

(2,5) are not shared by two faces each.

Euler operators transform the objects satisfying 
Euler’s formula by adding and removing vertices, 
edges and faces.

Mortenson, p.421 

(a) (c)(b)



Euler operators

A linear combination of five primitive operators (with 

their inverses) can represent all objects satisfying 

Euler formula:

1. Make (kill) an edge and a vertex (mev / kev)

2. Make a face and an edge (mfe / kfe)

3. Make a body, a face, and a vertex (mbfv / kbfv);

4. Make a cavity, or passage, and a body (mrb / krb);

5. Make an edge and kill a hole (me-kh).



Euler operators

Advantages of Euler operators:

 Ensured topological validity of the 

resulting solids

 Intermediate language isolating high-

level operations from the underlying 

data structures



Euler operators in the 

GWB system

Euler operators

Cube topology: a plane model



Euler 

operators 

in 

the GWB 

system

Mantila, CG&A, 1982, p.20



Set operations on BRep

Mortenson, p.404

• General approach: generate and test algorithm

• Solid S that results from a Boolean operation can 

be computed as follows:

- first generating a superset of its boundary as 

the union of the boundary faces of the solids being 

combined

- discarding those faces that are not on S. 



Set operations on BRep:  

2D polygons

Mortenson, p.404

The steps of the algorithm

for finding A  B: 

1. Find all intersection 

points of the edges of A

and B (points 1, 2, 3, 4)

2. Segment the edges of 

A and B. If the 

boundary of A is

parametrized from u=0

to u=1, then it has four 

segments: [u1, u2], 

[u2, u3], [u3,u4], [u4,u1]



Set operations on BRep:  

2D polygons

Mortenson, p.404

3. Find a point p0 on A

that is outside of B. Then 

that segment (here 

[u4,u1]) is also outside B.

4. Start at p0 and trace A 

to the next intersection 

with B (point 1).

5. Trace this segment of B to its intersection with A (point 

4). We have found one loop, but have not checked all 

segments. 



Set operations on BRep:  

2D polygons

Mortenson, p.404

6. Repeat 3 and find 

the segment [u2, u3]

7. Repeat 4 and find 

point 3

8. Repeat 5 and find 

point 2. We have 

found another loop.

Active segments of A: [u4,u1], [u2, u3]

of B: [v1,v4], [v3,v2]



Set operations:  

2D parametric curves

The idea is to find active regions of the bounding 

curves. These regions are defined by intersection 

points of primitives.

Example: A  B - C

(a)



Set operations:2D parametric curves

(c)

(b)

Mortenson, p.474



Set operations:

3D parametric surfaces

Points bound active regions 

on curves, and curves 

bound active regions on 

surfaces. The active surface 

regions (faces) on all the 

primitives define a closed 

surface of a solid.

Example: (A  B  C)  D

The active regions of the 

surfaces are shaded in the 

uw-plane.

Mortenson, p.476



Point membership 

classification 

Problem statement:

For the given point in space and a BRep solid 

model detect whether the point is inside, outside 

or on the boundary of the solid.

Standard algorithm:

Casting a ray from the given point in arbitrary 

direction and counting how many times it 

intersects the solid’s boundary.



Casting a ray: if the number of ray-surface intersection 

points is odd, the given point is in; if it is even, the point is 

out.

Point membership 

classification 

The ray cast from in point p has 5 intersections with the

polygon’s boundary, whereas the ray from out point q has 2.



Problems with casting a ray:

• How do we count intersections when the given 

point is on?

• Numerical errors associated with the intersection 

calculations may produce wrong counts.

• Ray may intersect an edge or a vertex, or 

partially lie in a face or an edge. How do we 

count intersections in such singular cases?

Point membership 

classification 



Ray 0: no intersection found

Ray 1: two intersection points

Ray ?: intersection with a vertex - should we count 

one or two intersections?

Point membership 

classification 



Casting a ray in 3D: case of the ray intersecting an edge.

Point membership 

classification 



Solutions:

• Choose a ray that does not intersect any

vertices or edges and does not lie in any faces or 

edges.

• Cast several rays in different directions and use 

the value that occurs most often.

• Use more complex algorithms:

First intersection point analysis [Requicha 1996]

Pseudo normals [Baerentzen 2005]

Generalized winding number [Jacobson 2013]

Point membership 

classification 



CSG to B-rep conversion

Exact conversion from CSG to boundary 

representations is called boundary evaluation

and consists of the following steps:

1. Consider all pairs of intersecting primitives 

in the CSG tree

2. For each pair, obtain a set of space curves 

in which they intersect



CSG to B-rep conversion

3. Classify each curve against the solid, we can 

determine those segments that are on the 

boundary of the solid. Each segment will be an 

edge of the boundary representation.

4. These segments now define, on the surface of the 

primitives, faces of the boundary representation.

5. By considering the neighborhoods, we derive the 

topological relationships between different faces.



CSG to B-rep 

conversion

Edge eab = Face a  Face b. Segment 2 of Edge eab is on 

the boundary of C  it is an edge of a face of C.

Mortenson, p.466



B-rep to CSG conversion

The first phase (geometric phase) has two steps:

1) Decompose the whole 3D model space using halfspaces.

The halfspaces are constructed from the face geometry of 
the  B-rep model. The halfspaces divide the model space 
into a set  of cells.

Paraphrase, No.10, Nov 1994, p.12



B-rep to 

CSG conversion
Paraphrase, No.10, Nov 1994, p.12 



B-rep to CSG conversion

2) Classify each of the cells as being occupied by the 
solid or being empty space. In the figure, C6, C10, and 
C11 are occupied by the solid. An initial CSG 
representation can be obtained by union of these cells.

 The second or combinatorial phase involves simplifying or 
minimizing the initial CSG tree. The algorithm applies 
well-known Boolean optimization techniques from digital 
logic design.



• BCSG is a system for converting boundary 
representations of solids ('B-reps') to efficient 
constructive ('CSG') representations.

BCSG is a C language implementation of the 
Vossler (EDS Unigraphics) / Shapiro (Cornell) 
procedure.

BCSG handles solids having up to two dozen natural-
quadric (planar, cylindrical, spherical, conical) faces. 

It accepts B-reps represented as Parasolid 'bodies', and 
converts them to CSG text representations defined in the 
PADL-2 language.

B-rep to CSG conversion

BCSG package
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