Discrete
Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Unit materials

e | ecture notes
e Seminar handouts

are available at
http://gm.softalliance.net/

Advice: download and print lecture notes
before the next lecture

Cover fragment of “Logic - Basics and Beyond” by G. Davies et al., Sine Metu

Contents

* Predicate

« Quantifier expressions

* Nested quantifiers

* Applications of predicate logic

/*,9\% Predicate Logic Background

* Propositional logic is not powerful enough to
represent all types of statements or to
express certain types of relationships
between propositions.

 Example: "x is greater than 1°

IS not a proposition because you can not tell
whether it Is true or false unless you know
the value of variable x.

ﬂ . Predicate Logic Background
Yo i

« Some logical equivalences can not be
proven by the propositional logic:
"Not all birds fly" Is equivalent to
"Some birds don't fly".
"Not all integers are even" is equivalent to
"Some integers are not even".

 For inferences like this, we need a more
expressive logic

Needed: treatment of some’ and every’

/*»e\% Predicate Logic

* Predicate logic is an extension of
propositional logic that permits concisely
reasoning about whole classes of entities
(presented by variables).

* Propositional logic treats simple propositions
(sentences) as atomic entities.

* In contrast, predicate logic distinguishes the
subject of a sentence from its property
(presented by a predicate).

ﬂ“ | Predicate Logic
Yo
»

« Sentence “The dog Is sleeping” has two parts:

— The phrase “the dog” denotes the subject -
the object or entity that the sentence is about.

— The phrase “is sleeping” denotes the predicate -
a property that is true of the subject.

« Statement “z is greater than 7” has two parts:

- Z IS the variable representing the subject

- “Is greater than 7° is the predicate representing the
property that the subject can have.

True or false? Not known: not a proposition

ﬂ e Predicate Logic
e

Denote P(z)="z is greater than 7°
P is a predicate " is greater than 7°
Z IS the variable.

P(z) is the value of the propositional function P
at z

Assign value to z, P(z) becomes a proposition
“*Truth value of P(9) is ...
“*Truth value of P(8) is ...

Predicate

* Predicate Is a verb phrase template that describes
a property of objects, or a relationship among
objects represented by the variables.

Examples:

"The car Tom is driving is blue”
"The sky is blue”

"The cover of this book is blue”®

* A predicate is modeled as a function P(-) from
objects to propositions.

Phrase P(x)=“x is blue" is a predicate and it
describes the property of variable x being blue.

Predicate

Examples:
"John gives the book to Mary",
"Jim gives a loaf of bread to Tom"®
"Jane gives a lecture to Mary”
Predicate G(x, y, z)= “x gives y to z*

Predicate logic generalizes the notion of
a predicate to include propositional
functions of any number of arguments.

ﬂ W Predicate
1S

Statement involving n variables can
be denoted by
P (X3, Xp, * ¢, Xp)
which is the value of the propositional
function P at the n-tuple (X;, X5, ***, X,)

and P Is also called a n-place predicate or
n-ary predicate.

K W Predicate

« Convention.
- Lowercase variables X, y, z... denote classes of
objects/entities;
- Igdividual constants denote individual objects:
ab,c,...
- Uppercase variables
P, Q, R... denote propositional functions
(predicates).

Result of applying a predicate P to a constant a is
the proposition P(a)

Meaning: the object denoted by a has the property
denoted by P.

/f.@\% Universe of Discourse
Ed!/

* Power of distinguishing objects from
predicates Is that it lets you state things
about many objects at once.

« Example: Let P(X)="x+1>X".
Then “For any number x, P(x) is true”

instead of (0+1>0) A (1+1>1) A (2+1>2) A ...

« What does “any” actually means?
What are the limits on x values?

/ Universe of Discourse
;* o
Yo \T;}

Eﬂ#

* Proposition can be true for all values of a
variable in a particular domain called
- the domain of discourse

- the universe of discourse (u.d.)
- the domain.

Example:

P(X)="x+1>Xx" is true for any x in the domain of
real numbers.

Universe of Discourse

Geometric interpretation

point of the
urnverse of
dizcourse

n-dimensional umverse of discourse

Contents

* Predicate

* Quantifier expressions
* Nested quantifiers
 Applications of predicate logic

/x,?\% Quantifier Expressions

* Quantifiers provide a notation that allows
us to quantify (count) how many objects In
the universe of discourse satisfy the given
predicate.

* Quantification expresses the extent to
which a predicate Is true over a range of
elements.

 In English, the words all, some, many,
none, and few are used Iin quantifications.

Universal Quantifier V

« “V” is the FOR VLL or universal quantifier.
vx P(x) means for all x in the u.d., P holds
true.

* Equivalence law for the V quantifier:

If u.d. =a,b,c,...

VX P(X) < P(a) A P(b) A P(c) A ...

Example:

If X Is real number, VX (Xx+1>X) Is true

K - Universal Quantifier ¥
\ Example

Let u.d. of x be parking spaces at university.

Let P(X) be predicate “x is full”

Then universal quantification of P(x), VX P(X),

IS proposition:

— “All parking spaces at the university are full.

— “Every parking space at the university is fu

— “For each parking space at the university, t
space is full.”

7

or
l.” or

nat

Universal Quantifier V

Counterexample

* PX P(X) is false if and only if P(x) is not
always true when x is in the domain:
—(VX P(X)) < —(P(a) A P(b) A P(c) A ...)
< —=P@)v-Pb)v-P)v...
* One way to show that P(x) is not always

true Is to find a counterexample —
a value x, where P(X,) Is false

* A single counterexample is enough to
show that Fx P(x) is false

Counterexample

P(x) = “x is black” o ’
For u.d. of cats, V& P(x) is d
false, see counterexample —

Counterexample 2:
Let P(X) = x<2

—

Counterexample 1: F "

Existential Quantifier 3

« “J” is the AXISTS or existential quantifier.
dx P(x) means there exists an x in the u.d.
such that P(x) Is true.

« Ix P(X) Is read as
“There is an x such that P(x)”

“There is at least one x such that P(x)”
“For some x, P(x).”

Existential Quantifier 3

« Equivalence law for the 3 quantifier:
if ud. =a,b,c,...
Ix P(x) < P(a) v P(b) v P(c) v ...

Example:
If X Is real number, Ix (x>3) Is true,

Existential Quantifier 3

* dx P(X) Is false if and only if P(x) Is not true
for all x Is in the domain:

—(3IX P(X)) < —=(P(a) v P(b) v P(c) v...)
< - P@aA-Pb)A-=P(c) ...

* Loop search for true value:

To see whether 3x P(x) Is true, we loop through
all the values of x searching for a value for which

P(x) Is true. If we find one, then 3x P(X) Is true.
If we never find such an x, then we have

determined that 3x P(X) is false.

ﬁ o Existential Quantifier 3

Let u.d. of x be parking spaces at university.
Let P(X) be predicate “x is full.”

Then the existential quantification of P(x), 3x
P(X), Is the proposition:

— “Some parking space at the university is full.”

— “There is a parking space at the university that is
full.”

— “At least one parking space at the university is
full.”

Quantifier Equivalence Laws

* Definitions of quantifiers: If u.d.=a,b,c,...
VX P(X) < P(a) A P(b) A P(C) A ...
Ix P(x) < P(a) v P(b) v P(c) v ...
* From those, we can prove the laws:
VX P(X) < —3x =P(X)
Ix P(X) & —=VX =P(X)

“*Which propositional equivalence laws
can be used to prove this?

DelVl: .gan’s

Quantifier Equivalence Laws

Negation of Quantifiers

De Morgan’s Laws for Quantifiers

Negation Equivalent Statement When Is Negation True? When False?
—3x P(x) Vx=P(x) For every x, P(x)is false. There is an x for which
P(x) is true.
Ix—P(x) There is an x for which P(x) is true for every x.

—VxP(x)

P(x) is false.

Negation of Quantifiers

Example:
“Every student in your class has taken a
course in calculus.” VX P(X)

—VX P(X) < 3Ix =P(X) means
“It is not the case that every student in
your class has taken a course in calculus.”
S

“There Is a student in your class who has
not taken a course in calculus.”

/*,9\% Free and Bound Variables

« Expression like P(x) Is said to have free
variable x (meaning, x is undefined).

* When quantifier (either Vv or 3) operates on
expression which has one or more free
variables, it binds one or more of those
variables, to produce an expression having
one or more bound variables.

 Variable also became bound when we assign
value to this variable.

/g?_\% Example of Binding

Example of binding variables using quantifiers:

P(x,y) has 2 free variables, x and y.

VX P(X,y) has 1 free variable, and one bound
variable. [Which is which?]

“ S(z), where z=3 ” Iis another way to bind z.
Expression with zero free variables is an actual
proposition.

Expression with one or more free variables is still
only a predicate: let Q(y) = Vx P(Xx,y)

Contents

* Predicate
« Quantifier expressions

* Nested quantifiers
* Applications of predicate logic

Nested Quantifiers

Two quantifiers are nested if one Is within the scope
of the other

Example: VX (3y(Xx +y = 0)) or simply
VX Ay(x +y = 0)
can be considered Vx Q (X),
where Q(x) Is AyP (X, y),
P(X,y)isx+y=0.

In English: for every real number x there is a real
number y such that x + y = 0,

and y = -x.

Nested Quantifiers

Different order of quantifiers:

y Vx (x +y=0)
“There is a real number y such that for every
real number x, x + y =0.”

*» Truth valueis ... ?

/ﬁ?\% Nested Quantifiers Example
Ed”

 Example: Let the u.d. of X & y be people.

* Let L(X,y)="x likes y” (a predicate with 2 free
variables)

 Then 3y L(X,y) = "“There is someone whom X
likes.” (a predicate with 1 free variable, x)

< Then ¥vx (Ay L(x,y)) =
“Everyone has someone whom they like.”

(A with @ free variables.)

Nested Quantifiers Example

Cover fragment of “Logic - Basics and Beyond” by G. Davies et al., Sine Metu

. Nested Quantifiers Exercise

If R(X,y)="X relies upon y,” express the
following in unambiguous English:

VX(3y R(X,y))=
Fy(VX R(X,Y))=
IX(VY R(X,Y))=
Vy(3x R(X,y))=
VX(Vy R(X,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom
everyone relies upon (including himself)!

There’s some needy person who relies upon
everybody (including himself).

Everyone has someone who relies upon
them.

Everyone relies upon everybody, (including
themselves)!

Quantifications of
two Variables

Statement When True? When False?
VxVyP(x,y) P(x, y) is true for every pair x, y. There is a pair x, y for
VWxP(x,y) which P(x, y) is false.
Vx3yP(x, y) For every x there is a y for There i an x such that

which P(x, y) is true. P(x, y) is false for every y.
IxVyP(x, y) There is an x for which P(x, y) For every x there is a y for

is true for every y. which P(x, y) is false.
Ix3Iy P(x, y) There is a pair x, y for which P(x, y) is false for every

3y3xP(x, y)

P(x, y) is true.

pair x, y.

Negation of Nested
Quantifiers

Example: find the negation of the statement
vx 3y (xy = 1) so that no negation precedes

a quantifier.

—vVx3dy (xy=1) <

X—3dy (xy=1) <

XVy-=(xy=1) <

X Vy (xy #1)

<* What Is the x value which makes the
true counterexample?

/*,N% Review of Predicate Logic

e

* Predicates P, Q, R, ... are functions mapping
objects x to propositions P(Xx).

* Universe of discourse
* Quantifiers:
vXx P(x) := “For all x’s, P(x).”
Ix P(x) := “There is an x such that P(x).”
—VX P(X) < IX = P(X)
e VX 3y L(X,y) =
“Everyone has someone whom they like.”

Contents

* Predicate
« Quantifier expressions
* Nested quantifiers

» Applications of predicate logic

/*.9\% Applications of Predicate Logic

* Predicate Logic is the formal notation for
writing perfectly clear, concise, and
unambiguous mathematical definitions,
axioms, and theorems for any branch of
mathematics.

__"

* Predicate logic with function symbols, the “=
operator, and a few equivalence rules is
sufficient for defining any mathematical
system, and for proving anything that can be
proved within that system!

/, Applications of Predicate Logic
¥ ”\Q/
B3

* It Is the basis for clearly expressed formal
specifications for any complex software
system.

* |t Is basis for automatic theorem proving
systems and many other Artificial
Intelligence systems (automatic program
verification).

* Predicate-logic like statements are
supported by some of the more
sophisticated database query engines.

K Applications of Predicate Logic
Y% Predicates in Programming

e
\ —\:’:;
IS 4

Statement of some programming language:
f(x>0)thenx =x+1
e Predicate P(x) ="x > 0"

* When this statement is encountered in a program, the
value of the variable x is inserted into P(Xx)

« If P(x) Is true for this value of x, the assignment
statement x ;= x + 1 Is executed

« If P(x) Is false for this value of x, the assignment
statement is not executed, so the value of x is not
changed

* P(x) can be very complex with Boolean operators

/ Applications of Predicate Logic
¥ 85, . .
Yo P

e’ Logic Programming

* There are some programming languages that
are based entirely on predicate logic!

* The most famous one is called Prolog.

* A Prolog program is a set of propositions
("facts”) and (“rules”) in predicate logic.

* The input to the program is a “query”
proposition:
— Want to know if it is true or false.

« The Prolog interpreter does some automated

deduction to determine whether the query
follows from the facts.

Logic Programming

Example in Prolog

« Facts described in Prolog:

instructor(chan,math273)
instructor (patel, ee222)
instructor(grossman,cs301)
enrolled (kevin, math273)
enrolled(juana, ee222)
enrolled(juana,cs301)
enrolled (kiko,math273)
enrolled(kiko,cs301)

teaches (P,S) :- instructor(P,C), enrolled(S,C)

Example in Prolog

* Queries in Prolog:

?enrolled(kevin,math273)

produces the response:
yes

?teaches (X, juana)

Contents

* Predicate

« Quantifier expressions

* Nested quantifiers

* Applications of predicate logic

ﬁ = Nature & Importance
g of Proofs

* |n mathematics, a proof is a correct (well-reasoned,

logically valid) and complete (clear, detailed)
argument that rigorously & undeniably establishes
the truth of a mathematical statement.

* Why must the argument be correct & complete?

- Correctness prevents us from fooling ourselves.
- Completeness allows anyone to verify the result.

« Methods of mathematical argument (i.e., proof
methods) can be formalized in terms of rules of

logical inference.

/*w\% Applications of Proofs

* An exercise In clear communication of logical
arguments in any area of study.

* The fundamental activity of mathematics is the
discovery through proofs of interesting new
theorems.

* Theorem-proving has applications in program
verification, computer security, automated
reasoning systems, etc.

* Proving a theorem allows us to rely on its
correctness even in the most critical scenarios.

/ﬁ?% Proof Terminology

Eﬂ#

e Theorem

A statement that has been proven to be true.

* Axioms, postulates, hypotheses, premises
Assumptions (often unproven) defining the
structures about which we are reasoning.

* Rules of inference

Patterns of
nypotheses

(l.e., equiva
* Theory

ogically valid deductions from
to conclusions
ence laws)

The set of all theorems that can be proven from a

given set of

axioms.

Basic Proof Methods

For proving that g follows from p, we have:

* Direct proof: Assume p Is true, and prove Q.
* Indirect proof: Assume —q, and prove —p.

* Trivial proof: Prove q by itself.

/x,?\% Direct Proof Example

* Def. An integer n Is called odd iff
n=2k+1 for some integer Kk;

n

IS even Iff

n=2k for some k.

 Thm. (For all numbers n) If n is an odd integer, then
n? is an odd integer.

* Proof. If nis odd, then n = 2k+1 for some integer K.

T
T
2

Nus, N% = (2k+1)? = 4k? + 4k + 1 = 2(2k? + 2k) + 1.
herefore n? is of the form 2j + 1 (with j the integer

k2 + 2k), thus n? is odd.

/*,N% Indirect Proof Example

Thm. (For all integers n)
If 3n+2 Is odd, then n Is odd.

Proof. Suppose that the conclusion is false, I.e.,
that n is even.
Then n=2k for some integer k.
Then 3n+2 = 3(2k)+2 = 6k+2 = 2(3k+1).
Thus 3n+2 Is even, because it equals 2j for integer
] = 3k+1.
So 3n+2 is not odd.
We have shown that 7(n is odd)—~(3n+2 is odd),
thus its contra-positive (3n+2 is odd) — (n is odd)
IS also true.

/f.w% Trivial Proof Example
Ed!/

 Thm. (For integers n) If n is the sum of
two prime numbers, then either n is odd or
nis even.

* Proof. Any integer n is either odd or even.
So the conclusion of the implication Is true
regardless of the truth of the antecedent.
Thus the implication is true trivially.

Theory Structure

A Particular Theory

The Axioms =
of the Theory Various Theorems

@

Questions’?

