

Unit materials

Lecture notes
 Seminar handouts
 are available at
 http://gm.softalliance.net/

 Advice: download and print lecture notes

before the next lecture

Predicate Logic

Cover fragment of "Logic - Basics and Beyond" by G. Davies et al., Sine Metu

Contents

- Predicate
- Quantifier expressions
- Nested quantifiers
- Applications of predicate logic
- Proofs

Predicate Logic Background

- Propositional logic is not powerful enough to represent all types of statements or to express certain types of relationships between propositions.
- Example: "x is greater than 1"

is not a proposition because you can not tell whether it is true or false unless you know the value of variable x.

Predicate Logic Background

- Some logical equivalences can not be proven by the propositional logic: "Not all birds fly" is equivalent to "Some birds don't fly".
 "Not all integers are even" is equivalent to "Some integers are not even".
- For inferences like this, we need a more expressive logic
 Needed: treatment of `some' and `every'

Predicate Logic

- Predicate logic is an extension of propositional logic that permits concisely reasoning about whole classes of entities (presented by variables).
- Propositional logic treats simple propositions (sentences) as atomic entities.
- In contrast, predicate logic distinguishes the subject of a sentence from its property (presented by a predicate).

Predicate Logic

- Sentence "The dog is sleeping" has two parts:
 - The phrase "the dog" denotes the subject the object or entity that the sentence is about.
 - The phrase "is sleeping" denotes the predicate a property that is true of the subject.
- Statement "z is greater than 7" has two parts:
 - z is the variable representing the subject
 - "is greater than 7" is the predicate representing the property that the subject can have.
- True or false? Not known: not a proposition

Predicate Logic

- Denote P(z)="z is greater than 7"
- P is a predicate " is greater than 7"
- z is the variable.
- P(z) is the value of the propositional function P at z
- Assign value to z, P(z) becomes a proposition
- Truth value of P(5) is ...
- Truth value of P(8) is ...

Predicate

 Predicate is a verb phrase template that describes a property of objects, or a relationship among objects represented by the variables.

Examples: "The car Tom is driving is blue" "The sky is blue" "The cover of this book is blue"

A predicate is modeled as a *function P*(·) from objects to propositions.

Phrase P(x)="x is blue" is a predicate and it describes the property of variable x being blue.

Examples:

- "John gives the book to Mary",
- "Jim gives a loaf of bread to Tom"
- "Jane gives a lecture to Mary"
 - Predicate G(x, y, z)= "x gives y to z"

Predicate logic generalizes the notion of a predicate to include propositional functions of **any** number of arguments.

Statement involving n variables can be denoted by

 $P(x_1, x_2, \dots, x_n)$ which is the value of the propositional function P at the n-tuple (x_1, x_2, \dots, x_n) and P is also called a n-place predicate or n-ary predicate.

Predicate

- Convention.
 - Lowercase variables *x*, *y*, *z*... denote classes of objects/entities;
 - Individual constants denote individual objects: a, b, c,...
 - Uppercase variables
 - *P*, *Q*, *R*... denote propositional functions (predicates).
 - Result of applying a predicate P to a constant a is the proposition P(a)
 - Meaning: the object denoted by *a* has the property denoted by *P*.

Universe of Discourse

- Power of distinguishing objects from predicates is that it lets you state things about many objects at once.
- Example: Let P(x)="x+1>x".
 Then "For any number x, P(x) is true" instead of (0+1>0) ^ (1+1>1) ^ (2+1>2) ^ ...
- What does "any" actually means?
 What are the limits on x values?

Universe of Discourse

- Proposition can be true for all values of a variable in a particular domain called
 - the domain of discourse
 - the universe of discourse (u.d.)
 - the domain.

Example:

P(x)="x+1>x" is true for any x in the domain of real numbers.

Universe of Discourse

Geometric interpretation

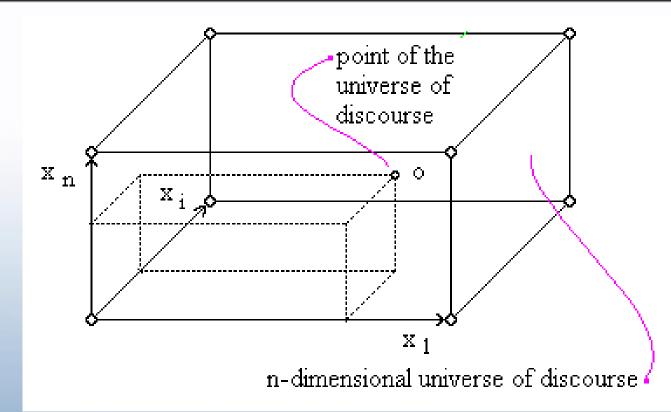


Image by A. Savinov

Scene bounding box represents the universe of discourse (can be entire space) and a point represents a variable value.

Contents

- Predicate
- Quantifier expressions
- Nested quantifiers
- Applications of predicate logic
- Proofs

Quantifier Expressions

- Quantifiers provide a notation that allows us to quantify (count) how many objects in the universe of discourse satisfy the given predicate.
- Quantification expresses the extent to which a predicate is true over a range of elements.
- In English, the words *all, some, many, none*, and *few* are used in quantifications.

Universal Quantifier \forall

- "∀" is the FOR ∀LL or universal quantifier.
 ∀x P(x) means for all x in the u.d., P holds true.
- Equivalence law for the ∀ quantifier:
- if u.d. = a,b,c,...
 - $\forall x P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land \dots$
- **Example:**
 - if x is real number, $\forall x (x+1>x)$ is true

Universal Quantifier ∀ Example

Let u.d. of x be parking spaces at university. Let P(x) be predicate "x is full" Then universal quantification of P(x), $\forall x P(x)$, is proposition:

- "All parking spaces at the university are full." or
- "Every parking space at the university is full." or
- "For each parking space at the university, that space is full."

Universal Quantifier ∀

Counterexample

- $\forall x P(x)$ is false if and only if P(x) is not always true when x is in the domain:
- $\neg (\forall x P(x)) \Leftrightarrow \neg (P(a) \land P(b) \land P(c) \land \dots)$ $\Leftrightarrow \neg P(a) \lor \neg P(b) \lor \neg P(c) \lor \dots$
- One way to show that P(x) is not always true is to find a counterexample – a value x₀ where P(x₀) is false
- A single counterexample is enough to show that \(\not x P(x)\) is false

Counterexample

Counterexample 1: P(x) = "x is black"For u.d. of cats, $\forall x P(x)$ is false, see counterexample **Counterexample 2:** Let P(x) = x < 2 $\forall x (x < 2)$ is false, because there is $x_0 = 3$, where $P(x_0) = (3 < 2)$ is false.



Topic #3 – Predicate Logic

Existential Quantifier 3

- " \exists " is the \exists XISTS or existential quantifier. $\exists x P(x)$ means there exists an x in the u.d. such that P(x) is true.
- ∃x P(x) is read as "There is an x such that P(x)"
 "There is at least one x such that P(x)"
 "For some x, P(x)."

Existential Quantifier 3

• Equivalence law for the \exists quantifier: if u.d. = a,b,c,... $\exists x P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor ...$

Example: if x is real number, $\exists x (x>3)$ is true, because there is x=4 and 4>3 is true.

Existential Quantifier 3

- $\exists x P(x)$ is false if and only if P(x) is not true for all x is in the domain:
- $\neg(\exists x P(x)) \Leftrightarrow \neg(P(a) \lor P(b) \lor P(c) \lor \dots)$ $\Leftrightarrow \neg P(a) \land \neg P(b) \land \neg P(c) \land \dots$
- Loop search for true value:

To see whether $\exists x P(x)$ is true, we loop through all the values of x searching for a value for which P(x) is true. If we find one, then $\exists x P(x)$ is true. If we never find such an x, then we have determined that $\exists x P(x)$ is false.

Existential Quantifier 3 Example

Let u.d. of x be <u>parking spaces at university</u>. Let P(x) be predicate "x is full." Then the existential quantification of P(x), $\exists x P(x)$, is the proposition:

- "Some parking space at the university is full."
- "There is a parking space at the university that is full."
- "At least one parking space at the university is full."

Quantifier Equivalence Laws

DeMorgan's

- Definitions of quantifiers: If u.d.=a,b,c,... $\forall x P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land ...$ $\exists x P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor ...$
- From those, we can prove the laws: $\forall x P(x) \Leftrightarrow \neg \exists x \neg P(x)$ $\exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$

Which propositional equivalence laws can be used to prove this? **Quantifier Equivalence Laws**

Negation of Quantifiers

De Morgan's Laws for Quantifiers

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x.

Negation of Quantifiers

 \Leftrightarrow

Example:

"Every student in your class has taken a course in calculus." $\forall x P(x)$

 $\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x) \text{ means}$

"It is not the case that every student in your class has taken a course in calculus."

"There is a student in your class who has not taken a course in calculus."

Free and Bound Variables

- Expression like P(x) is said to have free variable x (meaning, x is undefined).
- When quantifier (either ∀ or ∃) operates on expression which has one or more free variables, it binds one or more of those variables, to produce an expression having one or more bound variables.
- Variable also became bound when we assign value to this variable.

Example of Binding

Example of binding variables using quantifiers:

- P(x,y) has 2 free variables, x and y.
- ∀x P(x,y) has 1 free variable, and one bound variable. [Which is which?]
- "S(z), where z=3 " is another way to bind z.
- Expression with <u>zero</u> free variables is an actual proposition.
- Expression with <u>one or more</u> free variables is still only a predicate: let Q(y) = ∀x P(x,y)

Contents

- Predicate
- Quantifier expressions
- Nested quantifiers
- Applications of predicate logic
- Proofs

Nested Quantifiers

Two quantifiers are nested if one is within the scope of the other

Example: $\forall x (\exists y(x + y = 0)) \text{ or simply}$ $\forall x \exists y(x + y = 0)$ can be considered $\forall x Q (x)$, where Q(x) is $\exists y P (x, y)$, P (x, y) is x + y = 0. In English: for every real number x there is a real

number y such that x + y = 0,

and y = -x.

Nested Quantifiers

Different order of quantifiers: ∃y ∀x (x + y = 0) "There is a real number y such that for every real number x, x + y =0."

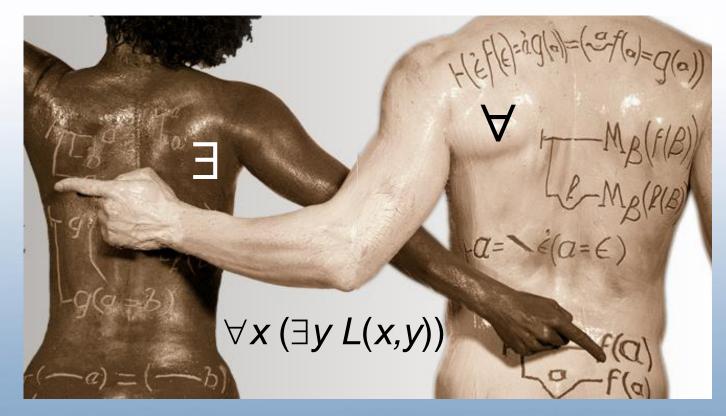
Nested Quantifiers Example

with *free* variables.)

- Example: Let the u.d. of x & y be people.
- Let L(x,y)="x likes y" (a predicate with 2 free variables)
- Then ∃y L(x,y) = "There is someone whom x likes." (a predicate with 1 free variable, x)
- ★ Then $\forall x (\exists y L(x,y)) =$ "Everyone has someone whom they like."

Nested Quantifiers Example

"Everyone has someone whom they like."



Cover fragment of "Logic - Basics and Beyond" by G. Davies et al., Sine Metu

Nested Quantifiers Exercise

- If R(x,y)="x relies upon y," express the following in unambiguous English:
- $\forall x(\exists y R(x,y)) =$
- $\exists y(\forall x R(x,y)) =$
- $\exists x(\forall y R(x,y)) =$
- $\forall y(\exists x R(x,y)) =$
- $\forall x(\forall y R(x,y)) =$

Everyone has *someone* to rely on.

- There's a poor overburdened soul whom *everyone* relies upon (including himself)!
- There's some needy person who relies upon *everybody* (including himself).
- Everyone has *someone* who relies upon them.

Everyone relies upon *everybody*, (including themselves)!

Quantifications of two Variables

Statement	When True?	When False?
$ \forall x \forall y P(x, y) \\ \forall y \forall x P(x, y) $	P(x, y) is true for every pair x, y .	There is a pair x, y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y.
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y.	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y.

Negation of Nested Quantifiers

Example: find the negation of the statement $\forall x \exists y (xy = 1)$ so that no negation precedes a quantifier.

 $\neg \forall x \exists y (xy = 1) \Leftrightarrow$ $\exists x \neg \exists y (xy = 1) \Leftrightarrow$ $\exists x \forall y \neg (xy = 1) \Leftrightarrow$ $\exists x \forall y (xy \neq 1)$

What is the x value which makes the true counterexample?

Review of Predicate Logic

- Predicates *P*, *Q*, *R*, ... are functions mapping objects *x* to propositions *P*(*x*).
- Universe of discourse
- Quantifiers:

 $\forall x P(x) :\equiv \text{``For all } x \text{'s, } P(x).\text{''}$ $\exists x P(x) :\equiv \text{``There is an } x \text{ such that } P(x).\text{''}$ $\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$

• $\forall x \exists y L(x,y) =$ "Everyone has someone whom they like."

Contents

- Predicate
- Quantifier expressions
- Nested quantifiers
- Applications of predicate logic
- Proofs

- Predicate Logic is the formal notation for writing perfectly clear, concise, and unambiguous mathematical definitions, axioms, and theorems for any branch of mathematics.
- Predicate logic with function symbols, the "=" operator, and a few equivalence rules is sufficient for defining any mathematical system, and for proving anything that can be proved within that system!

- It is the basis for clearly expressed formal specifications for any complex software system.
- It is basis for automatic theorem proving systems and many other Artificial Intelligence systems (automatic program verification).
- Predicate-logic like statements are supported by some of the more sophisticated database query engines.

Predicates in Programming

Statement of some programming language:

if (x > 0) *then* x := x + 1

- Predicate P(x) = "x > 0"
- When this statement is encountered in a program, the value of the variable x is inserted into P(x)
- If P(x) is true for this value of x, the assignment statement x := x + 1 is executed
- If P(x) is false for this value of x, the assignment statement is not executed, so the value of x is not changed
- P(x) can be very complex with Boolean operators

Logic Programming

- There are some programming languages that are based entirely on predicate logic!
- The most famous one is called **Prolog**.
- A Prolog program is a set of propositions ("facts") and ("rules") in predicate logic.
- The input to the program is a "query" proposition:
 - Want to know if it is true or false.
- The Prolog interpreter does some automated deduction to determine whether the query follows from the facts.

Logic Programming

Example in Prolog

• Facts described in Prolog:

instructor(chan,math273)
instructor(patel,ee222)
instructor(grossman,cs301)
enrolled(kevin,math273)
enrolled(juana,ee222)
enrolled(juana,cs301)
enrolled(kiko,math273)
enrolled(kiko,cs301)

• New predicate:

teaches(P,S) :- instructor(P,C), enrolled(S,C)

means professor P teaches student S, comma is \land

Example in Prolog

• Queries in Prolog:

?enrolled(kevin,math273)

produces the response:

yes

?teaches(X,juana)

produces the response: patel grossman

Contents

- Predicate
- Quantifier expressions
- Nested quantifiers
- Applications of predicate logic
- Proofs

Nature & Importance of Proofs

- In mathematics, a proof is a correct (well-reasoned, logically valid) and complete (clear, detailed) argument that rigorously & undeniably establishes the truth of a mathematical statement.
- Why must the argument be correct & complete?
 - Correctness prevents us from fooling ourselves.
 - Completeness allows anyone to verify the result.
- Methods of mathematical argument (*i.e.*, proof methods) can be formalized in terms of rules of logical inference.

Applications of Proofs

- An exercise in clear communication of logical arguments in any area of study.
- The fundamental activity of mathematics is the discovery through proofs of interesting new theorems.
- Theorem-proving has applications in program verification, computer security, automated reasoning systems, *etc.*
- Proving a theorem allows us to rely on its correctness even in the most critical scenarios.

Proof Terminology

- Theorem A statement that has been proven to be true.
- Axioms, postulates, hypotheses, premises Assumptions (often unproven) defining the structures about which we are reasoning.
- Rules of inference Patterns of logically valid deductions from hypotheses to conclusions (i.e., equivalence laws)
- Theory The set of all theorems that can be proven from a given set of axioms.

Basic Proof Methods

For proving *that q* follows from *p*, we have:

- *Direct* proof: Assume p is true, and prove q.
- *Indirect* proof: Assume ¬q, and prove ¬p.
- *Trivial* proof: Prove q by itself.

Direct Proof Example

- Def. An integer n is called odd iff n=2k+1 for some integer k; n is even iff n=2k for some k.
- Thm. (For all numbers *n*) If *n* is an odd integer, then *n*² is an odd integer.
- Proof. If *n* is odd, then n = 2k+1 for some integer *k*. Thus, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Therefore n^2 is of the form 2j + 1 (with *j* the integer $2k^2 + 2k$), thus n^2 is odd.

Indirect Proof Example

- Thm. (For all integers n)
 If 3n+2 is odd, then n is odd.
- Proof. Suppose that the conclusion is false, *i.e.*, that *n* is even.
 - Then n=2k for some integer k.
 - Then 3n+2 = 3(2k)+2 = 6k+2 = 2(3k+1).
 - Thus 3n+2 is even, because it equals 2j for integer j = 3k+1.
 - So 3n+2 is not odd.

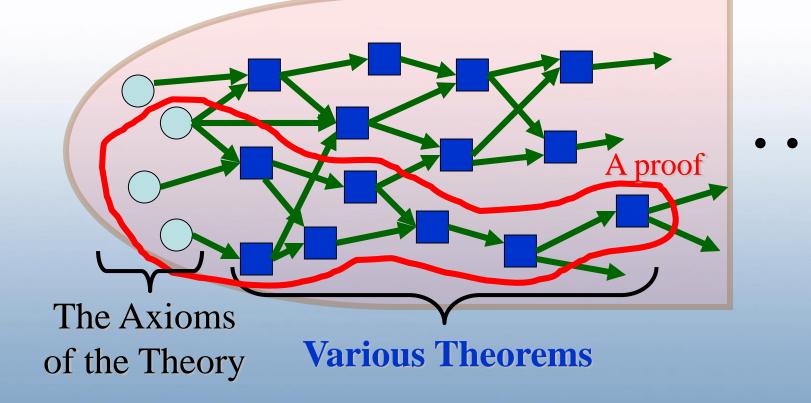
We have shown that $\neg(n \text{ is odd}) \rightarrow \neg(3n+2 \text{ is odd})$, thus its contra-positive $(3n+2 \text{ is odd}) \rightarrow (n \text{ is odd})$ is also true.

Trivial Proof Example

- Thm. (For integers *n*) If *n* is the sum of two prime numbers, then either *n* is odd or *n* is even.
- Proof. Any integer n is either odd or even.
 So the conclusion of the implication is true regardless of the truth of the antecedent.
 Thus the implication is true trivially.

Theory Structure

A Particular Theory



Questions?