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Unit materials

• Lecture notes

• Seminar handouts

are available at

http://gm.softalliance.net/

Advice: download and print lecture notes

before the next lecture



Sets

The stained glass in Caius Hall at Cambridge University commemorating John Venn.
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• Creation of one mathematician: 

Georg Cantor (1845-1918), born 

in Russia to a Danish father and a 

Russian mother and spent most 

of his life in Germany

• Great importance to the modern 

formulation of many topics of 

continuous and discrete 

mathematics

Set theory

Georg Cantor 

1845-1918



Notion of a Set

• Definition by Georg Cantor:

“A set is a gathering together into a whole 

of definite, distinct objects of our perception 

and of our thought – which are called 

elements of the set.”

• More simple “intuitive" or "naive" definition:

A set is a type of structure, representing an 

unordered collection of zero or more 

distinct objects (elements).



Notion of a Set

• Naive definitions turned out to be inadequate for formal 
mathematics

• Notion of a set is taken as an
undefined primitive in axiomatic set theory

• The most basic properties are 
- a set "has" elements
- two sets are equal if and only if they have the same 
elements. 

• Set theory deals with operations between, relations 
among, and statements about sets.

• All of mathematics can be defined in terms of some form 
of set theory.

• Sets are extensively used in computer software systems.



Set Membership

• Sets are denoted with capital letters S, T, U, … 

• Elements are denoted with low case letters x, y, z …

• If an object x is a member of a set A ,  then we 

denote this relationship as:     x ∈ A which reads 

“x belongs to A”, “x is a member of A” or “x is in A”.

• If an object x is not a member of a set A , then we 
denote this relationship as:   x ∉ A which reads 
“ x does not belong to A ”, “ x is not a member of A ” 
or “ x is not in A ”.

• The symbol “∈ ” was introduced by the Italian mathematician 
Giuseppe Peano in 1888, derived from the first letter of the 
Greek word “” meaning “is”.



Defining a Set

• We may define a particular set in two distinct 
ways:
- listing all the members
- by membership rule or semantic description  

List of set members

– A = {2 ,3, 6 ,8}      tabular form of the set.

– B = {x | x is an odd integer} or 
B = {x : x is an odd integer}. 
Here the symbols “ | ” and “ : ” are read as 
“where”.



Defining a Set

Set membership rule
A more general form (a set-builder form):

S = {x | P(x )} denotes the set S of all the entities 

(objects) x for which the predicate P(x) holds true. 

x ∈ S 


P(x) 

x True/False

“black box”



Defining a Set

Variation of the set-builder form:

S = {x ∈ A | P(x )} denotes the set S of all the 

elements x that belong to the set A and for which 

the predicate P(x) holds true. 

Example:

S = {x ∈ Z | P(x )}

where P(x) ="x is odd“, denotes the set of odd

integers.
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The Empty Set

• A set that contains no elements is called a 
null set or an empty set and is denoted by 

the symbol “∅”.

– If A is the set of all people in the world who are 

older than 200 years, then A is the empty set, 

i.e. A = ∅ .

– If B = {x | x2 = 4  x is an odd integer}, 
then B = ∅

• The empty set is the unique set that can be 
defined as  = {} = {x|xx} = ... = {x|False}



Finite and Infinite Sets

• A set is finite if it consists of a specific number 

of different elements (i.e., if the process of 

counting its elements can terminate.). 

Otherwise, the set is infinite. 

Examples:
– If D is the set of the days of the week, 

then D is a finite set.

– If O = {1, 3, 5, 7, …} , then O is an infinite set.

– If M = {x | x is a mountain of this planet},

then M is a finite set, even though it may be very difficult to 

count all the mountains.



• If a set S has n elements (where n is non-
negative integer), then we say that S has 

cardinality n.

• |S| (read “the cardinality of S”) is a measure of 
how many different elements S has.

• Examples: |{1,2,3}| = 3,   |{a,b}| = 2,
|{{1,2,3},{4,5}}| = ____

• If |S|N, then we say S is finite.
Otherwise, we say S is infinite.

• Cardinality of the empty set is 0

Cardinality and Finiteness



Power Set

• The power set P(S) of a set S is the set of 

all subsets of S:  P(S) :≡ {x | xS}.

Example: P({a,b}) = {, {a}, {b}, {a,b}}.

• Sometimes P(S) is written 2S, because

|P(S)| = 2|S|.

• It turns out S: |P(S)|>|S|,

e.g. |P(N)| > |N|.

There are different sizes of infinite sets.



Contents

• Notions for sets

• Basic properties of sets

• Venn-Euler diagrams

• Basic set operations

• Membership tables and CSG

• n Sets

• Cartesian product

• Algebra of sets



Venn-Euler 

Diagrams

John Venn

1834-1923

Leonhard Euler 

1707-1783

• A Venn-Euler diagram is a pictorial 

representation of specific sets and their 

relationships using geometic shapes 

(sets of points) on the plane to 

represent them.

• These diagrams were invented by Leonhard 

Euler and about 100 years later by John 

Venn. Venn used the term "Eulerian Circles".

• Used to illustrate specific sets and their 

subsets, and relationships between 

specific sets.



A C

B

U

Example: 

The universal set U represents all animals,  

C represents the set of all camels,  

B represents the set of all birds 

A represents the set of all albatrosses. 

The Venn diagram represents the relationship of these sets.

Venn-Euler Diagrams



A

U

Example: 

A = {e1 ,e2 ,e3 ,e4}

B = {e3 ,e4 ,e5 ,e6}

B
e1

e2

e3

e4

e5

e6

Venn-Euler Diagrams



Contents

• Notions for sets

• Basic properties of sets

• Venn-Euler diagrams

• Basic set operations

• Membership tables and CSG

• n Sets

• Cartesian product



Basic Set Operations: Union

The union of sets A and B is the set of elements 

that belong to set A or to set B or to both sets. We 

denote the union of sets A and B by A ∪ B , which 

reads “ A union B ”. 

– A ∪ B = {x | x ∈ A ∨ x ∈ B}

Example: if A = {a , b , c , d } and B = {c , d , e , f } 

then A ∪ B = {a , b , c , d, e , f }.

– The union operation is commutative

A ∪ B = B ∪ A 

– Both sets are subsets of their union

A ⊆ ( A ∪ B ) and B ⊆ ( A ∪ B ) .



Basic Set Operations: Union

Venn diagram for the union of sets B and A

B ∪ A

A

U

B e1B ∪ A

U

B AB



• {a,b,c}{2,3} = {a,b,c,2,3}

• {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7} 

Union Examples



A = {x ∈ R | x  -1}

B = {x ∈ R | x  1}

A  B = {x ∈ R | x  -1 ∨ x  1} =    

{x ∈ R | x  -1 }  

Union Examples

-1

AB

1 R



Intersection operation

The intersection of sets A and B is the set of elements that are

common to both sets. We denote the intersection of sets A and B

by A ∩ B , which reads “ A intersection B ”: 

– A ∩ B = {x | x ∈ A ∧ x ∈ B}

If A = {a , b , c , d } and B = {c , d , e , f } , then A∩ B = {c , d }.

– The intersection is commutative

A ∩ B = B ∩ A.

– the intersection of two sets is subset of both sets

( A ∩ B )⊆ A and ( A ∩ B )⊆ B . U

B e1 AB A ∩ B



• {a,b,c}{2,3} = ___

• {2,4,6}{3,4,5} = ______

Intersection Examples



{4}



A = {x ∈ R | x  -1}

B = {x ∈ R | x  1}

A  B = {x ∈ R | x  -1 ∧ x  1} =    

{x ∈ R | -1  x  1}  

Intersection Examples

-1

A
B

1
A  B R



A = {x ∈ R | x  0}

B = {x ∈ R | x  0}

A  B = {x ∈ R | x  0 ∧ x  0} =    

{x ∈ R | x = 0} = {0} 

Intersection Examples

0

AB

R



Disjoint Sets Definition

• Two sets A, B are called disjoint (i.e., not 

joined) if their intersection is empty:  

A  B = 

• Example: the set of even integers is 

disjoint with the set of odd integers.

B

A

U

The Venn diagram of two disjoint sets.



Inclusion-Exclusion Principle

• How many elements are in AB?

|AB| = |A|  |B|  |AB|

This method of calculation the cardinality is called 

the inclusion-exclusion principle.

• Example: How many students are on our class list?  

Consider set E  I  M, 

I = {s | s exists in the attendance sheet}

M = {s | s exists in the email list}

• Some students may be only in one list

|E| = |IM| = |I|  |M|  |IM|



Difference operation

• The difference of sets A and B (subtraction of B from A) is 

the set of elements that belong to set A and do not belong to 

set B. We denote the difference of sets A and B by A - B

or A \ B , 

A - B = {x | x ∈ A ∧ x ∉ B}

Example: If A = {a , b , c , d } and B = {c , d , e , f } ,            

then A - B = {a , b }.

– The difference is not commutative: A - B ≠ B - A. .
U

A - B

A                          B

Open boundary



Difference Examples

• {1,2,3,4,5,6}  {2,3,5,7,9,11} =

___________

• Z  N  {… , −1, 0, 1, 2, … }  {1, 2,… }

= {x | x is an integer but not a natural}

= {… , −3, −2, −1, 0}

{1,4,6}



A = {x ∈ R }

B = {x ∈ R | -1  x  1}

A - B = {x ∈ R | ¬ (-1  x  1)}

{x ∈ R | x < -1 ∨ x > 1}      

Difference Examples

-1

AB

1 R



A = {x ∈ R | x  -1}

B = {x ∈ R | x  1}

A - B = {x ∈ R | x  -1 ∧ ¬(x  1)} =  

{x ∈ R | x  -1 ∧ x >1} = 

{x ∈ R | x > 1}  

Difference Examples

-1

A
B

1

A - B

R



Set Complements

• When the context clearly defines the 

universal set U, we say that for any set 

AU, the complement of A, written     or 

A’ or ¬A is the complement of A with 

respect to U: A’ = UA

Example: If U=N, A = {3,5}

A’ = {1, 2, 4, 6, 7…}

A

U

A’ = U - A

AOpen boundary



A = {x ∈ R | x=1}

¬A = {x ∈ R | ¬ (x=1)} =

{x ∈ R | x < 1 ∨ x > 1}

Set Complement Example

¬A

1 R



Symmetric Difference

The symmetric difference of sets A and B is the set of 

elements that belong to one of the sets A or B and do not 

belong to both sets:

A  B = {x | (x ∈ A ∧ x ∉ B) ∨ (x ∈ B ∧ x ∉ A) } =

{x | x ∈ A  x ∈ B}

Example: 

If A = {a , b , c , d } and B = {c , d , e , f } ,            

then A  B = {a , b, e, f}.



Symmetric Difference

A  B = (A ∪ B ) - (A ∩ B)

Open boundary



A = {x ∈ R | x  -1}

B = {x ∈ R | x  1}

A  B = {x ∈ R | 

(x  -1 ∨ x  1) – (-1  x  1)} =

{x ∈ R | x < -1 ∨ x > 1}

Symmetric Difference 

Example

-1

A
B

1A  B R



U

B

e1

A ∩ BA ∩ BA- B B - A

A                                              B

Basic Set Operations: 

summary

U



Contents

• Notions for sets

• Basic properties of sets

• Venn-Euler diagrams

• Basic set operations

• Membership tables and CSG

• n Sets

• Cartesian product

• Algebra of sets



Set Membership Tables

• Just like truth tables for propositional logic.

• Columns for different set expressions.

• Rows for all combinations of memberships 
in constituent sets.

• 2n rows for n constituent sets

• Use “1” to indicate membership in the 
derived set, “0” for non-membership.

• Prove equivalence of set expressions with 
identical columns.



Membership Table Example

Prove (AB)B = AB.

AA BB AABB ((AABB))BB AABB

0 0 0 0 0

0 1 1 0 0

1 0 1 1 1

1 1 1 0 0



Membership Table Exercise

Prove (AB)C = (AC)(BC).

A B C AABB ((AABB))CC AACC BBCC ((AACC))((BBCC)) 

0 0 0      

0 0 1      

0 1 0 1     

0 1 1 1     

1 0 0 1     

1 0 1 1     

1 1 0 1     

1 1 1 1     
 

 



Prove (AB)C = (AC)(BC).

A B C AABB ((AABB))CC AACC BBCC ((AACC))((BBCC)) 

0 0 0      

0 0 1      

0 1 0 1 1    

0 1 1 1     

1 0 0 1 1    

1 0 1 1     

1 1 0 1 1    

1 1 1 1     
 

 

Membership Table Exercise



Prove (AB)C = (AC)(BC).

A B C AABB ((AABB))CC AACC BBCC ((AACC))((BBCC)) 

0 0 0      

0 0 1      

0 1 0 1 1  1  

0 1 1 1     

1 0 0 1 1 1   

1 0 1 1     

1 1 0 1 1 1 1  

1 1 1 1     
 

 

Membership Table Exercise



Prove (AB)C = (AC)(BC).

A B C AABB ((AABB))CC AACC BBCC ((AACC))((BBCC)) 

0 0 0      

0 0 1      

0 1 0 1 1  1 1 

0 1 1 1     

1 0 0 1 1 1  1 

1 0 1 1     

1 1 0 1 1 1 1 1 

1 1 1 1     
 

 

Membership Table Exercise



• CSG is based on a set of 3D solid 
primitives and set-theoretic operations

• Traditional primitives: block, cylinder, cone, 
sphere, torus

• Operations; union, intersection, difference  
+  translation and rotation

Constructive Solid 

Geometry (CSG)



Constructive Solid Geometry (CSG)

• A complex solid is represented with a binary tree 

usually called CSG tree

CSG

Object

oper1 oper3

oper2
oper4 obj2 obj4

obj2 obj3

CSG tree

obj1
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• Venn diagram for n sets must contain all 

2n hypothetically possible zones that 

correspond to all combinations of inclusion 

or exclusion in each of the component sets.

• 2n zones correspond to the number of rows 

in the set membership table:

• n=2, 4 zones; 

• n=3, 8 zones; 

• n=4, 16 zones, etc.

Venn Diagrams for n Sets

1

2

3

4



n=3, 8 zones 

Venn Diagrams for n Sets

Venn diagram: intersections of 
the Greek, Latin and 
Russian alphabets 

A B

AC

U

AB

ABC

BC

C



n=4, 16 zones                           n=5, 32 zones

Venn Diagrams for n Sets

Devised by Branko Grünbaum



Venn Diagrams for n Sets



Venn Diagrams for n Sets

Venn diagrams devised by Anthony Edwards for n = 3, 4, 5, 6



Generalized Unions & 

Intersections

• Since union & intersection are 
commutative and associative, we can 
extend them from operating on ordered 
pairs of sets (A,B) to operating on 
sequences of sets (A1,…,An), or even on 
unordered sets of sets,

 = {A | P(A)}  (for some property P).

(This is just like using  when adding up 
large or variable numbers of numbers)



Generalized Union

• Binary union operator: AB

• n-ary union:
AA2…An : ((…((A1 A2)…) An)
(grouping & order is irrelevant)

• “Big U” notation:

 Ai = A1  A2  …  An

• Or for infinite sets of sets :     A 

n

i=1

A  



Generalized Intersection

• Binary intersection operator: A  B

• n-ary union:
A1A2…An((…((A1A2)…)An) 

(grouping & order is irrelevant)

• “Big Arch” notation:

 Ai = A1  A2 … An

• Or for infinite sets of sets :    A 

n

i=1

A  
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Tuples

• Sometimes we need to consider ordered 

collections of objects

• Definition: The ordered n-tuple 

(a1,a2,…,an) is the ordered collection with 

the element ai being the i-th element for 

i=1,2,…,n

• Two ordered n-tuples (a1,a2,…,an) and 

(b1,b2,…,bn) are equal if and only if for 

every i=1,2,…,n we have ai=bi (a1,a2,…,an)

• A 2-tuple (n=2) is called an ordered pair



Cartesian Products of Sets

• For sets A, B, their Cartesian product

AB : {(a, b) | aA  bB }.

is the set of all possible ordered pairs whose first 

component is a member of A and whose second 

component is a member of B

Example:

{a,b}{1,2} = {(a,1),(a,2),(b,1),(b,2)}

René Descartes 

(1596-1650) 

• Other terms: product set, set direct product, or 

cross product



Cartesian Products of Sets

Example:

{John,Mary,Ellen}  {News,Soap} =

{(John,News), (Mary,News), (Ellen,News),

(John,Soap), (Mary,Soap), (Ellen,Soap)}

• Subset of a Cartesian product, R  AB is 
called a relation over the sets A and B.

Example: {(John,News), (Mary,Soap), (Ellen,Soap)} is 

a relation over sets {John,Mary,Ellen} and {News,Soap}



• Note that 

– for finite A, B,   |AB| = |A|.|B|

– the Cartesian product is not commutative: 

A,B: AB=BA

AB = BA, if A= or B= or A=B

• Cartesian product can be generalized for any 

n-tuple: Cartesian product of n sets, A1,A2, …, An is

A1A2… An ={ (a1,a2,…,an) | aiAi for i=1,2,…,n}

• Cartesian power of a set An = AA… A

Cartesian Products of Sets



 Set of all points 

visited by an object A 

moving along a 

trajectory B is a new 

solid, called a sweep.

 Translational 

sweeping (extrusion): 

2D area moves along 

a line normal to the 

plane of the area.

Sweep as Cartesian 

Product
z

B
SWEEP

x y

A

Image by Martin 

Culpepper, 1999
x

AB



Review: Set Notations

• Set enumeration {a, b, c}

and set-builder {x|P(x)}

•  relation, and the empty set .

• Set relations =, , , , , , etc.

• Cardinality |S|

• Power sets P(S)

• Venn diagrams

• Set operations , , -, 

• Constructive Solid Geometry, sweeping
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Algebra of Sets 

The Identity Rules:

A ∪ ∅ = A  

A ∩ U = A  

A ∪ U = U  

A ∩ ∅ = ∅

The Complement Rules:

A ∪ A′ = U 

A ∩ A′ = ∅

U′ = ∅

∅′ = U

The Idempotent Rules:

(A′ )′ = A   

A∪ A = A    

A ∩ A = A

U Universal set and its subsets A , B , C



The Associative Rules: 

( A ∪ B ) ∪ C = A ∪ (B ∪ C )

( A ∩ B ) ∩ C = A ∩ (B ∩ C )

The Distributive Rules: 

A ∪ (B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) 

A ∩ (B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C )

The De Morgan Rules:

i) ( A ∪ B )′ = A′ ∩ B′ 

ii) ( A ∩ B )′ = A′ ∪ B′

iii) A – (B ∪ C) = (A - B) ∩ (A-C)

iv) A – (B ∩ C) = (A - B) ∪ (A-C)

Algebra of Sets



SequoiaView

Algebra of Sets

Associative Rules 
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The Associative Rules: 

( A ∪ B ) ∪ C = A ∪ (B ∪ C )

( A ∩ B ) ∩ C = A ∩ (B ∩ C )

The Distributive Rules: 

A ∪ (B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) 

A ∩ (B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C )

Algebra of Sets

The De Morgan Rules:

i) ( A ∪ B )′ = A′ ∩ B′ 

ii) ( A ∩ B )′ = A′ ∪ B′

iii) A – (B ∪ C) = (A - B) ∩ (A-C)

iv) A – (B ∩ C) = (A - B) ∪ (A-C)
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The Associative Rules: 

( A ∪ B ) ∪ C = A ∪ (B ∪ C )

( A ∩ B ) ∩ C = A ∩ (B ∩ C )

The Distributive Rules: 

A ∪ (B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) 

A ∩ (B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C )

Algebra of Sets

The De Morgan Rules:

i) ( A ∪ B )′ = A′ ∩ B′ 

ii) ( A ∩ B )′ = A′ ∪ B′

iii) A – (B ∪ C) = (A - B) ∩ (A-C)

iv) A – (B ∩ C) = (A - B) ∪ (A-C)
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