Discrete Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Unit materials

- Lecture notes
- Seminar handouts are available at http://gm.softalliance.net/
Advice: download and print lecture notes before the next lecture

Sets

The stained glass in Caius Hall at Cambridge University commemorating John Venn.

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product
- Algebra of sets

Set theory

- Creation of one mathematician: Georg Cantor (1845-1918), born in Russia to a Danish father and a Russian mother and spent most of his life in Germany
- Great importance to the modern formulation of many topics of continuous and discrete

Georg Cantor 1845-1918

Notion of a Set

- Definition by Georg Cantor:
"A set is a gathering together into a whole of definite, distinct objects of our perception and of our thought - which are called elements of the set."
- More simple "intuitive" or "naive" definition: A set is a type of structure, representing an unordered collection of zero or more distinct objects (elements).

Notion of a Set

- Naive definitions turned out to be inadequate for formal mathematics
- Notion of a set is taken as an undefined primitive in axiomatic set theory
- The most basic properties are
- a set "has" elements
- two sets are equal if and only if they have the same elements.
- Set theory deals with operations between, relations among, and statements about sets.
- All of mathematics can be defined in terms of some form of set theory.
- Sets are extensively used in computer software systems.

Set Membership

- Sets are denoted with capital letters S, T, U, \ldots
- Elements are denoted with low case letters $x, y, z \ldots$
- If an object x is a member of a set \boldsymbol{A}, then we denote this relationship as: $\quad x \in A$ which reads " x belongs to A ", " x is a member of A" or " x is in A".
- If an object x is not a member of a set A, then we denote this relationship as: $x \notin A$ which reads " x does not belong to A ", " x is not a member of A " or " x is not in A".
- The symbol " \in " was introduced by the Italian mathematician Giuseppe Peano in 1888, derived from the first letter of the Greek word " $\varepsilon \iota v \alpha l$ " meaning "is".

Defining a Set

- We may define a particular set in two distinct ways:
- listing all the members
- by membership rule or semantic description

List of set members
$-A=\{2,3,6,8\} \quad$ tabular form of the set.
$-B=\{x \mid x$ is an odd integer $\}$ or $B=\{x: x$ is an odd integer $\}$.
Here the symbols "|" and ": " are read as "where".

Defining a Set

Set membership rule

 A more general form (a set-builder form):$S=\{x \mid P(x)\}$ denotes the set S of all the entities (objects) x for which the predicate $P(x)$ holds true.

Defining a Set

Variation of the set-builder form:
$S=\{x \in A \mid P(x)\}$ denotes the set S of all the elements x that belong to the set A and for which the predicate $P(x)$ holds true.

Example:

$S=\{x \in Z \mid P(x)\}$
where $P(x)=$ " x is odd", denotes the set of odd integers.

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product
- Algebra of sets

The Empty Set

- A set that contains no elements is called a null set or an empty set and is denoted by the symbol " \emptyset ".
- If A is the set of all people in the world who are older than 200 years, then A is the empty set, i.e. $A=\varnothing$.
- If $B=\left\{x \mid x^{2}=4 \wedge x\right.$ is an odd integer $\}$, then $B=\varnothing$
- The empty set is the unique set that can be defined as $\varnothing=\{ \}=\{x \mid x \neq x\}=\ldots=\{x \mid$ False $\}$

Finite and Infinite Sets

- A set is finite if it consists of a specific number of different elements (i.e., if the process of counting its elements can terminate.).
Otherwise, the set is infinite.
Examples:
- If \boldsymbol{D} is the set of the days of the week, then \boldsymbol{D} is a finite set.
- If $\boldsymbol{O}=\{1,3,5,7, \ldots\}$, then \boldsymbol{O} is an infinite set.
- If $\boldsymbol{M}=\{x \mid x$ is a mountain of this planet $\}$, then \boldsymbol{M} is a finite set, even though it may be very difficult to count all the mountains.

Cardinality and Finiteness

- If a set \boldsymbol{S} has n elements (where n is nonnegative integer), then we say that S has cardinality n.
- $|S|$ (read "the cardinality of S ") is a measure of how many different elements S has.
- Examples: $|\{1,2,3\}|=3, \quad|\{a, b\}|=2$,

$$
|\{\{1,2,3\},\{4,5\}\}|=
$$

- If $|S| \in \mathbf{N}$, then we say S is finite. Otherwise, we say S is infinite.
- Cardinality of the empty set is 0

Power Set

- The power set $\mathrm{P}(\mathrm{S})$ of a set S is the set of all subsets of $S: P(S): \equiv\{x \mid x \subseteq S\}$.
Example: $\mathrm{P}(\{\mathrm{a}, \mathrm{b}\})=\{\varnothing,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$.
- Sometimes $P(S)$ is written 2^{S}, because $|P(S)|=2^{|S|}$.
- It turns out $\forall S$: $|\mathrm{P}(S)|>|S|$, e.g. $|\mathrm{P}(\mathbf{N})|>|\mathbf{N}|$.

There are different sizes of infinite sets.

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product
- Algebra of sets

Venn-Euler Diagrams

- A Venn-Euler diagram is a pictorial representation of specific sets and their relationships using geometic shapes (sets of points) on the plane to represent them.
- These diagrams were invented by Leonhard Euler and about 100 years later by John Venn. Venn used the term "Eulerian Circles".
- Used to illustrate specific sets and their subsets, and relationships between specific sets.

John Venn
1834-1923

Venn-Euler Diagrams

Example:

The universal set U represents all animals,
C represents the set of all camels,
B represents the set of all birds
A represents the set of all albatrosses.
The Venn diagram represents the relationship of these sets.

Venn-Euler Diagrams

Example:
$A=\{e 1, e 2, e 3, e 4\}$
$B=\{e 3, e 4, e 5, e 6\}$

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product

Basic Set Operations: Union

The union of sets \boldsymbol{A} and \boldsymbol{B} is the set of elements that belong to set \boldsymbol{A} or to set \boldsymbol{B} or to both sets. We denote the union of sets \boldsymbol{A} and B by $\boldsymbol{A} \cup \boldsymbol{B}$, which reads " \boldsymbol{A} union \boldsymbol{B} ".
$-\boldsymbol{A} \cup \boldsymbol{B}=\{\mathrm{x} \mid \mathrm{x} \in \boldsymbol{A} \vee \mathrm{x} \in \boldsymbol{B}\}$
Example: if $\boldsymbol{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{B}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$ then $\boldsymbol{A} \cup \boldsymbol{B}=\{a, b, c, d, e, f\}$.

- The union operation is commutative

$$
A \cup B=B \cup A
$$

- Both sets are subsets of their union

$$
A \subseteq(A \cup B) \text { and } B \subseteq(A \cup B)
$$

Basic Set Operations: Union

Venn diagram for the union of sets \boldsymbol{B} and \boldsymbol{A} $B \cup \boldsymbol{A}$

Union Examples

- $\{a, b, c\} \cup\{2,3\}=\{a, b, c, 2,3\}$
- $\{2,3,5\} \cup\{3,5,7\}=\{2,3,5,3,5,7\}=\{2,3,5,7\}$

Union Examples

$$
\begin{aligned}
& A=\{x \in R \mid x \geq-1\} \\
& B=\{x \in R \mid x \geq 1\} \\
& A \cup B=\{x \in R \mid x \geq-1 \vee x \geq 1\}= \\
& \qquad\{x \in R \mid x \geq-1\}
\end{aligned}
$$

Intersection operation

The intersection of sets \boldsymbol{A} and \boldsymbol{B} is the set of elements that are common to both sets. We denote the intersection of sets \boldsymbol{A} and \boldsymbol{B} by $\boldsymbol{A} \cap \boldsymbol{B}$, which reads " \boldsymbol{A} intersection \boldsymbol{B} ":
$-\boldsymbol{A} \cap \boldsymbol{B}=\{\mathrm{x} \mid \mathrm{x} \in \boldsymbol{A} \wedge \mathrm{x} \in \boldsymbol{B}\}$
If $\boldsymbol{A}=\{a, b, c, d\}$ and $B=\{c, d, e, f\}$, then $\boldsymbol{A} \cap \boldsymbol{B}=\{c, d\}$.

- The intersection is commutative

$$
A \cap B=B \cap A .
$$

- the intersection of two sets is subset of both sets $(A \cap B) \subseteq A$ and $(A \cap B) \subseteq B$.

Intersection Examples

- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \cap\{2,3\}=\varnothing$
- $\{2,4,6\} \cap\{3,4,5\}=\{4\}$

Intersection Examples

$A=\{x \in R \mid x \geq-1\}$
$B=\{x \in R \mid x \leq 1\}$
$A \cap B=\{x \in R \mid x \geq-1 \wedge x \leq 1\}=$
$\{x \in R \mid-1 \leq x \leq 1\}$
-1 $A \cap B$
R

B
A

Intersection Examples

$$
\begin{aligned}
& A=\{x \in R \mid x \geq 0\} \\
& B=\{x \in R \mid x \leq 0\} \\
& A \cap B=\{x \in R \mid x \geq 0 \wedge x \leq 0\}= \\
& \qquad \begin{array}{ll}
A & \text { A }
\end{array}
\end{aligned}
$$

Disjoint Sets Definition

- Two sets A, B are called disjoint (i.e., not joined) if their intersection is empty:

$$
A \cap B=\varnothing
$$

- Example: the set of even integers is disjoint with the set of odd integers.

The Venn diagram of two disjoint sets.

Inclusion-Exclusion Principle

- How many elements are in $A \cup B$?

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

This method of calculation the cardinality is called the inclusion-exclusion principle.

- Example: How many students are on our class list? Consider set $E=I \cup M$,
$I=\{s \mid s$ exists in the attendance sheet $\}$ $M=\{s \mid s$ exists in the email list $\}$
- Some students may be only in one list

$$
|E|=|\Lambda M|=|I|+|M|-||\cap M|
$$

Difference operation

- The difference of sets \boldsymbol{A} and \boldsymbol{B} (subtraction of \boldsymbol{B} from \boldsymbol{A}) is the set of elements that belong to set A and do not belong to set B. We denote the difference of sets \boldsymbol{A} and \boldsymbol{B} by $\boldsymbol{A}-\boldsymbol{B}$ or $\boldsymbol{A} \mid \boldsymbol{B}$,
$\boldsymbol{A}-\boldsymbol{B}=\{\mathrm{x} \mid \mathrm{x} \in \boldsymbol{A} \wedge \mathrm{x} \notin \boldsymbol{B}\}$
Example: If $\boldsymbol{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{B}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$, then $\boldsymbol{A}-\boldsymbol{B}=\{\mathrm{a}, \mathrm{b}\}$.
- The difference is not commutative: \boldsymbol{A} - $\boldsymbol{B} \neq \boldsymbol{B}$ - \boldsymbol{A}. .

Open boundary

Difference Examples

$$
\begin{gathered}
\cdot\{1,2,3,4,5,6\}-\{2,3,5,7,9,11\} \\
\frac{\{1,4,6\}}{}= \\
\hline
\end{gathered}
$$

- $\mathbf{Z}-\mathbf{N}=\{\ldots,-1,0,1,2, \ldots\}-\{1,2, \ldots\}$ $=\{x \mid x$ is an integer but not a natural $\}$

$$
=\{\ldots,-3,-2,-1,0\}
$$

Difference Examples

$$
A=\{x \in R\}
$$

$$
B=\{x \in R /-1 \leq x \leq 1\}
$$

$$
A-B=\{x \in R / \neg(-1 \leq x \leq 1)\}
$$

$$
\{x \in R \mid x<-1 v x>1\}
$$

$$
-1 \quad 1
$$

Difference Examples

$$
\begin{aligned}
& A=\{x \in R \mid x \geq-1\} \\
& B=\{x \in R \mid x \leq 1\} \\
& A-B=\{x \in R \mid x \geq-1 \wedge \neg(x \leq 1)\}= \\
& \qquad\{x \in R \mid x \geq-1 \wedge x>1\}= \\
& \{x \in R \mid x>1\}
\end{aligned}
$$

Set Complements

- When the context clearly defines the universal set U, we say that for any set $A \subseteq U$, the complement of A, written \bar{A} or A^{\prime} or $\neg A$ is the complement of A with respect to $U: A^{\prime}=U-A$
Example: If $U=\mathbf{N}, A=\{3,5\}$

$$
A^{\prime}=\{1,2,4,6,7 \ldots\}
$$

Open boundary
$A^{\prime}=U-A$

Set Complement Example

$$
\begin{aligned}
A= & \{x \in R \mid x=1\} \\
\neg A= & \{x \in R \mid \neg(x=1)\}= \\
& \{x \in R \mid x<1 \vee x>1\}
\end{aligned}
$$

$\neg A$

Symmetric Difference

The symmetric difference of sets \boldsymbol{A} and \boldsymbol{B} is the set of elements that belong to one of the sets A or B and do not belong to both sets:
$\boldsymbol{A} \Delta \boldsymbol{B}=\{x \mid(x \in \boldsymbol{A} \wedge x \notin \boldsymbol{B}) \vee(x \in \boldsymbol{B} \wedge x \notin \boldsymbol{A})\}=$ $\{x \mid x \in \boldsymbol{A} \oplus x \in \boldsymbol{B}\}$

Example:
If $\boldsymbol{A}=\{a, b, c, d\}$ and $B=\{c, d, e, f\}$, then $\boldsymbol{A} \Delta \boldsymbol{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{f}\}$.

$A \Delta B=(A \cup B)-(A \cap B)$

Symmetric Difference Example

$$
\begin{aligned}
A= & \{x \in R \mid x \geq-1\} \\
B= & \{x \in R \mid x \leq 1\} \\
A \Delta B= & \{x \in R \mid \\
& \quad(x \geq-1 \vee x \leq 1)-(-1 \leq x \leq 1)\}= \\
& \{x \in R \mid x<-1 \vee x>1\}
\end{aligned}
$$

$$
{ }_{-1} A \Delta B
$$

Basic Set Operations: summary

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product
- Algebra of sets

Set Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- 2^{n} rows for n constituent sets
- Use " 1 " to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence of set expressions with identical columns.

Membership Table Example

Prove $(A \cup B)-B=A-B$.

A	B	$A \cup B$	$(A \cup B)-B$	$A-B$
0	0	0	0	$\left(\begin{array}{l}0 \\ 0\end{array}\right.$
1	1		0	
1	0	1		1
1	1	1		

Membership Table Exercise

Prove $(A \cup B)-C=(A-C) \cup(B-C)$.

			B	C	$A \cup B$	$(A \cup B)-C$
0	0	$A-C$		$B-C$	$(A-C) \cup(B-C)$	
0	0					
0	0					
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	1			

Membership Table Exercise

Prove $(A \cup B)-C=(A-C) \cup(B-C)$.

A	B	$C A \cup B$	$(A \cup B)-C$	$A-C$	$B-C$	$(A-C) \cup(B-C)$	
0	0	0					
0	0	1					
0	1	0	1	1			
0	1	1	1	1			
1	0	0	1	1			
1	0	1	1	1			
1	1	0	1				
1	1	1	1				

Membership Table Exercise

Prove $(A \cup B)-C=(A-C) \cup(B-C)$.

A	B	$C A \cup B$	$(A \cup B)-C$	$A-C$	$B-C$	$(A-C) \cup(B-C)$	
0	0	0					
0	0	1					
0	1	0	1	1		1	
0	1	1	1	1			
1	0	0	1	1		1	
1	0	1	1	1			
1	1	0	1	1		1	
1	1	1	1				

Membership Table Exercise

Prove $(A \cup B)-C=(A-C) \cup(B-C)$.

$A B C$	$A \cup B$	$(A \cup B)-C$	$A-C$	$B-C$	$(A-C) \cup(B-C)$
000					
001		ค			ค
010	1	1		1	1
011					
100	1	1	1		1
101	1				
110	1	1	1	1	1
111	1	\checkmark			\checkmark

- CSG is based on a set of 3D solid primitives and set-theoretic operations
- Traditional primitives: block, cylinder, cone, sphere, torus
- Operations; union, intersection, difference + translation and rotation

Constructive Solid Geometry (CSG)

CSG tree

- A complex solid is represented with a binary tree usually called CSG tree

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product
- Algebra of sets

Venn Diagrams for n Sets

- Venn diagram for n sets must contain all 2^{n} hypothetically possible zones that correspond to all combinations of inclusion or exclusion in each of the component sets.
- 2^{n} zones correspond to the number of rows in the set membership table:
- $\mathrm{n}=2,4$ zones;
- n=3, 8 zones;
- $\mathrm{n}=4,16$ zones, etc.

$$
\text { n=3, } 8 \text { zones }
$$

Venn diagram: intersections of the Greek, Latin and Russian alphabets

$\mathrm{n}=4$, 16 zones
 $n=5,32$ zones

Devised by Branko Grünbaum

Venn Diagrams for n Sets

Venn Diagrams for n Sets

Venn diagrams devised by Anthony Edwards for $\mathrm{n}=3,4,5,6$

Edwards' Venn diagram of three sets

Edwards' Venn diagram of five sets

Edwards' Venn diagram of four sets

Edwards' Venn diagram of six sets

Generalized Unions \& Intersections

- Since union \& intersection are commutative and associative, we can extend them from operating on ordered pairs of sets (A, B) to operating on sequences of sets $\left(A_{1}, \ldots, A_{n}\right)$, or even on unordered sets of sets,
$\Psi=\{A \mid P(A)\}$ (for some property P).
(This is just like using Σ when adding up large or variable numbers of numbers)

Generalized Union

- Binary union operator: $A \cup B$
- n-ary union: $A \cup A_{2} \cup \ldots \cup A_{n}: \equiv\left(\left(\ldots\left(\left(A_{1} \cup A_{2}\right) \cup \ldots\right) \cup A_{n}\right)\right.$ (grouping \& order is irrelevant)
- "Big U" notation:

$$
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}
$$

- Or for infinite sets of sets Ψ :

$$
A \in \Psi
$$

Generalized Intersection

- Binary intersection operator: $A \cap B$
- n-ary union:
$A_{1} \cap A_{2} \cap \ldots \cap A_{n} \equiv\left(\left(\ldots\left(\left(A_{1} \cap A_{2}\right) \cap \ldots\right) \cap A_{n}\right)\right.$
(grouping \& order is irrelevant)
- "Big Arch" notation:

$$
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \ldots \cap A_{n}
$$

- Or for infinite sets of sets Ψ :

$$
A \in \Psi
$$

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product
- Algebra of sets

Tuples

- Sometimes we need to consider ordered collections of objects
- Definition: The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection with the element a_{i} being the i-th element for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Two ordered n-tuples ($a_{1}, a_{2}, \ldots, a_{n}$) and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are equal if and only if for every $i=1,2, \ldots, n$ we have $a_{i}=b_{i}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- A 2-tuple ($n=2$) is called an ordered pair

Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B: \equiv\{(a, b) \mid a \in A \wedge b \in B\}$.
is the set of all possible ordered pairs whose first component is a member of A and whose second component is a member of B

Example:

$\{\mathrm{a}, \mathrm{b}\} \times\{1,2\}=\{(\mathrm{a}, 1),(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{b}, 2)\}$

- Other terms: product set, set direct product, or cross product

René Descartes (1596-1650)

Cartesian Products of Sets

Example:

\{John,Mary,Ellen\} \times \{News,Soap\} $=$ \{(John,News), (Mary,News), (Ellen,News), (John,Soap), (Mary,Soap), (Ellen,Soap)\}

- Subset of a Cartesian product, $R \subseteq A \times B$ is called a relation over the sets A and B.
Example: \{(John,News), (Mary,Soap), (Ellen,Soap)\} is a relation over sets \{John,Mary,Ellen\} and \{News,Soap\}

Cartesian Products of Sets

- Note that
- for finite $A, B, \quad|A \times B|=|A| .|B|$
- the Cartesian product is not commutative:
$\neg \forall A, B: A \times B=B \times A$

$$
A \times B=B \times A \text {, if } A=\varnothing \text { or } B=\varnothing \text { or } A=B
$$

- Cartesian product can be generalized for any n-tuple: Cartesian product of n sets, $A_{1}, A_{2}, \ldots, A_{n}$ is $A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}\right.$ for $\left.i=1,2, \ldots, n\right\}$
- Cartesian power of a set $A^{n}=A \times A \times \ldots \times A$

Sweep as Cartesian Product

- Set of all points visited by an object A moving along a trajectory B is a new solid, called a sweep.

- Translational sweeping (extrusion): 2D area moves along a line normal to the plane of the area.

Image by Martin

Review: Set Notations

- Set enumeration $\{a, b, c\}$ and set-builder $\{x \mid P(x)\}$
- \in relation, and the empty set \varnothing.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \not \subset$, etc.
- Cardinality $|S|$
- Power sets $\mathrm{P}(S)$
- Venn diagrams
- Set operations $\cup, \cap,-, \times$
- Constructive Solid Geometry, sweeping

Contents

- Notions for sets
- Basic properties of sets
- Venn-Euler diagrams
- Basic set operations
- Membership tables and CSG
- n Sets
- Cartesian product
- Algebra of sets

Algebra of Sets

\boldsymbol{U} Universal set and its subsets $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$

The Identity Rules:

$$
\begin{aligned}
& A \cup \emptyset=A \\
& A \cap U=A \\
& A \cup U=U \\
& A \cap \emptyset=\varnothing
\end{aligned}
$$

The Idempotent Rules:

$$
\begin{aligned}
& \left(A^{\prime}\right)^{\prime}=A \\
& A \cup A=A \\
& A \cap A=A
\end{aligned}
$$

The Complement Rules:

$$
\begin{aligned}
& A \cup A^{\prime}=\mathbf{U} \\
& A \cap A^{\prime}=\emptyset
\end{aligned}
$$

$$
U^{\prime}=\varnothing
$$

$\varnothing^{\prime}=\mathbf{U}$

Algebra of Sets

The Associative Rules:

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

The Distributive Rules:

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

The De Morgan Rules:

$$
\begin{aligned}
& \text { i) }(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& \text { ii) }(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \\
& \text { iii) } A-(B \cup C)=(A-B) \cap(A-C) \\
& \text { iv) } A-(B \cap C)=(A-B) \cup(A-C)
\end{aligned}
$$

Algebra of Sets

Associative Rules

$A \cup(B \cup C)=(A \cup B) \cup C$
Verification of the associative law for the union of sets using Venn diagrams:

$A \cap(B \cap C)=(A \cap B) \cap C$

Verification of the associative law for intersection of sets using Venn diagrams"

Algebra of Sets

The Associative Rules:

$$
\begin{aligned}
&(A \cup B) \cup C=A \cup(B \cup C) \\
&(A \cap B) \cap C=A \cap(B \cap C) \\
& \text { The Distributive Rules: }
\end{aligned}
$$

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

The De Morgan Rules:

$$
\begin{aligned}
& \text { i) }(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& \text { ii) }(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \\
& \text { iii) } A-(B \cup C)=(A-B) \cap(A-C) \\
& \text { iv) } A-(B \cap C)=(A-B) \cup(A-C)
\end{aligned}
$$

Algebra of Sets

Distributive Rules

$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Algebra of Sets

The Associative Rules:

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

The Distributive Rules:

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

The De Morgan Rules:

$$
\begin{aligned}
& \text { i) }(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& \text { ii) }(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \\
& \text { iii) } A-(B \cup C)=(A-B) \cap(A-C) \\
& \text { iv) } A-(B \cap C)=(A-B) \cup(A-C)
\end{aligned}
$$

Algebra of Sets

De Morgan Rules

(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
$A \cup B$

A^{\prime}

$(A \cup B)^{\prime}$

$\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

Algebra of Sets
(ii) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
$A \cap B$

$(A \cap B)^{\prime}$

$A^{\prime} \cup B^{\prime}$

Algebra of Sets

(iii) $A-(B \cup C)=(A-B) \cap A-C)$

Algebra of Sets

(iv) $A-(B \cap C)=(A-B) \cup(A-C)$

Set Identities

Identity	Name
$A \cup \varnothing=A$	Identity laws
$A \cap U=A$	
$A \cup U=U$	Domination laws
$A \cap \varnothing=\varnothing$	Idempotent laws
$A \cup A=A$	
$A \cap A=A$	Complementation law
$\overline{(\bar{A})}=A$	Commutative laws
$A \cup B=B \cup A$	
$A \cap B=B \cap A$	Associative laws
$A \cup(B \cup C)=(A \cup B) \cup C$	Distributive laws
$A \cap(B \cap C)=(A \cap B) \cap C$	De Morgan's laws
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	Absorption laws
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	
$\overline{A \cap B}=\bar{A} \cup \bar{B}$	Complement laws
$A \cup(A \cap B)=A$	
$A \cap(A \cup B)=A$	
$A \cup \bar{A}=U$	$A \cap \bar{A}=\varnothing$
A	

