Geometric Modeling

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Unit materials

 Lecture notes
 Seminar handouts are available at http://gm.softalliance.net/
 Advice: download and print lecture notes

before the next lecture

Example: k-D unit cube

A unit cube in k-D space is a set of points $P(x_1, x_2, \dots, x_n)$ such as: $0 \leq x_1 \leq 1$ $0 \le x_2 \le 1$ $0 \leq x_n \leq 1$

Shape Dimension

A shape is k-dimensional if there is a continuous one-to-one mapping of the k-dimensional cube (ball) to this shape.

$k \le n, n = 1 - 4$	Shape
0	Point
1	Curve
2	Surface
3	Solid
k = 3, n = 4	Volume

Defining a Point Set

- List of points
- Mapping of a known set
- Point membership rule
- Generation rule

List of Points

2D space	3D space	nD space
<x<sub>1, Y₁></x<sub>	<x<sub>1, Y₁, Z₁></x<sub>	<x<sub>11, X₁₂, X₁₃,, X_{1n}></x<sub>
<x<sub>2, Y₂></x<sub>	<x<sub>2, Y₂, Z₂></x<sub>	<x<sub>21, X₂₂, X₂₃,, X_{2n}></x<sub>
<x<sub>k, Y_k></x<sub>	<x<sub>k, Y_k, Z_k></x<sub>	<x<sub>k1, X_{k2}, X_{k3},, X_{kn}></x<sub>

Model: Linear array defines one point in nD space

Only finite point sets can be defined in this way and no continuous shape (such as curve or surface) can be defined.

Scanned point cloud

Image by Yu. Otake and A. Belyaev

Point Cloud of a Human Brain

http://www.fpsols.com/point_cloud.html

Examples of Particle systems

Stormy sea

Animation by Steve Green DreamScape plug-in to 3DS MAX

Animation by Thomas Marque DreamScape plug-in to 3DS MAX

Mapping of a Known Set

$M : A \rightarrow B$

Parametric curves, surfaces and volumes are defined in this way.

"Explicit" Curve in 2D

Mapping F: $R \rightarrow R$ Definition: y = f(x)

+ time t Mapping F: $\mathbb{R}^2 \rightarrow \mathbb{R}$ **Definition:** y = f(x, t)8

0

Animation from CurvusPro

Image from HyperFun

"Explicit" Surface in 3D

Mapping $F: \mathbb{R}^2 \to \mathbb{R}$ Definition: z = f(x,y)5 2.0 1.5 1.0 0.5 -1.0 -1.5 -2.0 -2.5 -3.0 2.5 0.0 -2.0

-3 0

+ time t F: $R^3 \rightarrow R$ **Definition:** z = f(x,y,t)

Animation from CurvusPro

Image from HyperFun

Other terms: relief surface, height field, depth field, 2.5D

Volume – "Explicit" Hypersurface in 4D

Mapping F: $\mathbb{R}^3 \rightarrow \mathbb{R}$ Definition: $\lambda = f(x.v,z)$

Discrete scalar field: function λ is defined in the grid nodes Other terms: volumetric object, voxel object, 3D scalar field

Volume Image of Head

This example shows a volume rendered as a semitransparent media with variable density in space.

Volume - "Explicit" Hypersurface in 4D

+ time t Mapping F: $\mathbb{R}^4 \rightarrow \mathbb{R}$ Definition: $\lambda = f(x,y,z,t)$

Frames of volumetric animation - rendering of time-dependent smoke density function $\boldsymbol{\lambda}$

2D Parametric Curve

Mapping F: $R \rightarrow R^2$ **Definition:** $\mathbf{x} = \mathbf{x}(\mathbf{u})$ $\mathbf{y} = \mathbf{y}(\mathbf{u})$ + time t Mapping F: $R^2 \rightarrow R^2$ Definition: $\mathbf{x} = \mathbf{x}(\mathbf{u}, \mathbf{t})$ $\mathbf{y} = \mathbf{y}(\mathbf{u}, \mathbf{t})$

Animations from WIMS at wims.univ-mrs.fr

3D Parametric Curve

Parametric curve example

Image from CurvusPro

Parametric Surface

Mapping F: $E^2 \rightarrow E^3$

Model:

Parametric spiral surface

Image from CurvusPro

Parametric Surface

+ time T Mapping F: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ Definition: $\mathbf{x} = \mathbf{x}(\mathbf{u}, \mathbf{v}, \mathbf{t})$ $\mathbf{y} = \mathbf{y}(\mathbf{u}, \mathbf{v}, \mathbf{t})$

Animation by David Parker

z = z(u, v, t)

Parametric Solid

Mapping F: $E^3 \rightarrow E^3$

Parametric Coons Solids

Image by S. Czanner and R. Durikovic, University of Aizu

Point Membership Rule

"Implicit" form

"Implicit" Form

 $f(x_1, x_2, ..., x_n)$ -

continuous real function of n variables. Implicit objects in

nD space: Solid (k=n):

$$f(x_1, x_2, ..., x_n) \ge 0$$

Others $(k < n)$:
 $f(x_1, x_2, ..., x_n) = 0$

Disk (k=2)f(x,y)Circle (k=1)f(x,y)

$$\begin{aligned} f(x,y) &= R^2 - x^2 - y^2 \\ f(x,y) &\geq 0 \\ f(x,y) &= 0 \end{aligned}$$

"Implicit" Curve in 2D

f(x,y)=0

Image from HyperFun

Image from CurvusPro

Animation from HyperFun

Isosurface or "Implicit" Surface

$$\xi = f(x,y,z)$$

is a function of three variables and a surface

$$\xi = 0$$
 or $f(x,y,z) = 0$

is an iso-valued surface (isosurface) or an "implicit" surface)

Sphere: $R^2 - x^2 - y^2 - z^2 = 0$

Implicit Surfaces and Solids

A set of points in 3D space with f(x,y,z) = 0

is called an implicit surface

A 3D solid is defined as $f(x, y, z) \ge 0$ with the implicit surface as its boundary.

Sphere and Solid Ball

Sphere surface: $R^2 - x^2 - y^2 - z^2 = 0$ Solid ball: $R^2 - x^2 - y^2 - z^2 \ge 0$

Chebyshev Polynomial

Complex isosurface defined by equation f(x,y,z)=0

Teeth Isosurface

Isosurface defined by volume data $f(x_i, y_j, z_k) = c$

Image by D. Fang et al., University of California, Devis

Dataset of Siemens Medical Systems

Generation Rule

A rule can be specified to generate a shape in a recursive manner (fractals, L-systems, other procedural models)

Model: iterative functions p' = f(p)in 2D or 3D space.

Generation Rule

Image by Linda Allison

Image "Thick ballerina" by Olga http://www.eclectasy.com/Fractal-Explorer/

Generation Rule

Fractal animation

+ time t p' = f(p,t)

Animation from Filmer by Julian Haight

Model: grammar Example: 1) Axiom X 2) Rules X --> F-[[X]+X]+F[+FX]-X F --> FF

Generation Rule

Words of wisdom

"Geometry is the mathematical science of shape"

"Without geometry, life is pointless"

www.proudnerd.com

References

• James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Computer **Graphics:** Principles and Practice (2nd Edition in C), Addison-Wesley, Reading, MA, 1997.

THE SYSTEMS PROGRAMMING SERIES

I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Muehlig, H. Mühlig, Handbook of Mathematics, Springer, 2003

References

- MathWorld, 2006 <u>http://mathworld.wolfram.com</u>
- Wikipedia, 2006
 <u>http://en.wikipedia.org/wiki</u>
- Michael Leyton, A Generative Theory of Shape, Lecture Notes in Computer Science, Vol. 2145, SPRINGER, BERLIN, 2001.
- V. Savchenko, A. Pasko, Shape Modeling, Encyclopedia of Computer Science and Technology, vol. 45, Marcel Dekker, 2002, pp. 311-346
- Carl Vilbrandt, Computer Aided Design's eXtended Dimensions
 <u>http://journal.hyperdrome.net/issues/issue1/vilbrandt.html</u>