Geometric Modeling

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Discrete Mathematics

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Unit materials

- Lecture notes
- Seminar handouts are available at http://gm.softalliance.net/
Advice: download and print lecture notes before the next lecture

Example: k-D unit cube

A unit cube in k-D space is a set of points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ such as:

$$
\begin{gathered}
0 \leq x_{1} \leq 1 \\
0 \leq x_{2} \leq 1 \\
\ldots \\
0 \leq x_{n} \leq 1
\end{gathered}
$$

Shape Dimension

A shape is k -dimensional if there is a continuous one-to-one mapping of the k-dimensional cube (ball) to this shape.

$$
\begin{array}{c|c}
\mathbf{k} \leq \mathbf{n}, \mathbf{n}=\mathbf{1 - 4} & \text { Shape } \\
0 & \text { Point } \\
1 & \text { Curve } \\
2 & \text { Surface } \\
3 & \text { Solid } \\
\mathrm{k}=3, \mathrm{n}=4 & \text { Volume }
\end{array}
$$

Defining a Point Set

- List of points
- Mapping of a known set
- Point membership rule
- Generation rule

2D space
$\left\langle X_{1}, Y_{1}\right\rangle$
$\left\langle X_{2}, Y_{2}\right\rangle$
...
$\left\langle X_{k}, Y_{k}\right\rangle$

3D space
$<X_{1}, Y_{1}, Z_{1}>$
$<X_{2}, Y_{2}, Z_{2}>$
...
$\left\langle X_{k}, Y_{k}, Z_{k}\right\rangle$
nD space
$<X_{11}, X_{12}, X_{13}, \ldots, X_{1 n}>$
$<X_{21}, X_{22}, X_{23}, \ldots, X_{2 n}>$
...
$<X_{k 1}, X_{k 2}, X_{k 3}, \ldots, X_{k n}>$

Model: Linear array defines one point in nD space
Only finite point sets can be defined in this way and no continuous shape (such as curve or surface) can be defined.

Scanned point cloud

Point Cloud of a Human Brain

http://www.fpsols.com/point_cloud.html
Image by Yu. Otake and A. Belyaev

Examples of Particle systems

Stormy sea

Animation by Steve Green
DreamScape plug-in to 3DS MAX

Explosion

Animation by Thomas Marque
DreamScape plug-in to 3DS MAX

Mapping of a Known Set

$$
M: A \rightarrow B
$$

Parametric curves, surfaces and volumes are defined in this way.

"Explicit" Curve in 2D

Mapping
$\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$
Definition:
$y=f(x)$

Image from HyperFun

+ time t
Mapping
$\mathrm{F}: \mathrm{R}^{2} \rightarrow \mathrm{R}$
Definition:

 \title{
"Explicit" Surface in 3D
}
 \title{
"Explicit" Surface in 3D
}

Mapping
$\mathrm{F}: \mathrm{R}^{2} \rightarrow \mathrm{R}$
Definition:
$z=f(x, y)$

+ time t
$\mathrm{F}: \mathrm{R}^{3} \rightarrow \mathrm{R}$ Definition:

$$
z=f(x, y, t)
$$

Animation from CurvusPro
Image from HyperFun
Other terms: relief surface, height field, depth field, 2.5D

Volume -

"Explicit" Hypersurface in 4D

Mapping F: $\mathrm{R}^{3} \rightarrow \mathrm{R}$

Definition: $\lambda=f(x . v, z)$

Discrete scalar field: function λ is defined in the grid nodes

Volume rendering of smoke density function $\lambda \quad$ Image by A. Winter

Other terms: volumetric object, voxel object, 3D scalar field

Volume Image of Head

This example shows a volume rendered as a semitransparent media with variable density in space.

Image by Volume Graphics IPI vlib

Volume - "Explicit" Hypersurface in 4D

+ time t

Mapping F: $\mathrm{R}^{4} \rightarrow \mathrm{R}$ Definition:
$\lambda=f(x, y, z, t)$

Frames of volumetric animation - rendering of time-dependent smoke density function λ

2D Parametric Curve

Mapping F: $\mathrm{R} \rightarrow \mathrm{R}^{2}$

Definition:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}(\mathbf{u}) \\
& \mathbf{y}=\mathbf{y}(\mathbf{u})
\end{aligned}
$$

+ time t
Mapping F: $\mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$
Definition:

$$
\begin{aligned}
& x=x(u, t) \\
& y=y(u, t)
\end{aligned}
$$

Animations from WIMS at wims.univ-mrs.fr

3D Parametric Curve

Mapping F: R \rightarrow R^{3}

+ time t

Animations from DPGraph http://www.dpgraph.com

Parametric curve example

Image from CurvusPro

Parametric Surface

Mapping F: $\mathrm{E}^{2} \rightarrow \mathrm{E}^{3}$
Model:
Surface

Parametric spiral surface

Image from CurvusPro

Parametric Surface

+ time T

Mapping F: $\mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$

Definition: $x=x(u, v, t)$

$$
\begin{aligned}
& \mathbf{y}=\mathbf{y}(\mathbf{u}, \mathbf{v}, \mathbf{t}) \\
& \mathbf{z}=\mathbf{z}(\mathbf{u}, \mathbf{v}, \mathbf{t})
\end{aligned}
$$

Parametric Solid

Mapping F: $\mathrm{E}^{3 \rightarrow \mathrm{E}^{3}}$

Model:

Solid

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}(\mathbf{u}, \mathbf{v}, \mathbf{w}) \\
& \mathbf{y}=\mathbf{y}(\mathbf{u}, \mathbf{v}, \mathbf{w}) \\
& \mathbf{z}=\mathbf{z}(\mathbf{u}, \mathbf{v}, \mathbf{w})
\end{aligned}
$$

Parametric Coons Solids

Image by S. Czanner and R. Durikovic, University of Aizu

Point Membership Rule

"Implicit" form

"Implicit" Form

$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-$

continuous real function of n variables.
Implicit objects in nD space:
Solid ($k=n$):
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \geq 0$
Others $(k<n)$:
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$

$$
f(x, y)=R^{2}-x^{2}-y^{2}
$$

Disk (k=2) $\quad f(x, y) \geq 0$
Circle (k=1) $\quad f(x, y)=0$

"Implicit" Curve in 2D

$f(x, y)=0$

+ time t
 $f(x, y, t)=0$

Animation from HyperFun

$$
\xi=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

is a function of three variables and a surface

$$
\xi=0 \text { or } f(x, y, z)=0
$$

is an iso-valued surface (isosurface) or an "implicit" surface)

Sphere: $\quad R^{2}-x^{2}-y^{2}-z^{2}=0$

Implicit Surfaces and Solids

A set of points in 3D space with

$$
f(x, y, z)=0
$$

is called an implicit surface

A 3D solid is defined as

$$
f(x, y, z) \geq 0
$$

with the implicit surface as its boundary.

Sphere and Solid Ball

Sphere surface:
$R^{2}-x^{2}-y^{2}-z^{2}=0$

Solid ball:

$R^{2}-x^{2}-y^{2}-z^{2} \geq 0$

Chebyshev Polynomial

Complex isosurface defined by equation $f(x, y, z)=0$

Teeth Isosurface

Isosurface defined by volume data $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{k}}\right)=\mathrm{c}$

Image by D. Fang et al., University of California, Devis
Dataset of Siemens Medical Systems

Generation Rule

A rule can be specified to generate a shape in a recursive manner (fractals, L-systems, other procedural models)

Generation Rule

Fractals

Model:

iterative functions $p^{\prime}=f(p)$ in 2D or 3D space.

Image "Thick ballerina" by Olga
http://www.eclectasy.com/Fractal-Explorer/

Fractal animation

+ time t
$p^{\prime}=f(p, t)$

Animation from Filmer
by Julian Haight

Generation Rule

L - systems

Model: grammar

Example:

1) Axiom X
2) Rules
X--> F-[[X]+X]+F[+FX]-X
F --> FF

Image by P. Bourke, Swinburne University

Words of wisdom

"Geometry is the mathematical science of shape"

"Without geometry, life is pointless"

References

- James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics: Principles and Practice (2nd Edition in C), AddisonWesley, Reading, MA, 1997.

Computer Graphics
PRINCIPLES AND PRACTICE
Foley • van Dam • Feiner • Hughes

THE SYSTEMS PROGRAMMING SERIES

References

- I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Muehlig, H. Mühlig, Handbook of Mathematics, Springer, 2003
- MathWorld, 2006
- Wikipedia, 2006
http://mathworld.wolfram.com
http://en.wikipedia.org/wiki
- Michael Leyton, A Generative Theory of Shape, Lecture Notes in Computer Science, Vol. 2145, SPRINGER, BERLIN, 2001.
- V. Savchenko, A. Pasko, Shape Modeling, Encyclopedia of Computer Science and Technology, vol. 45, Marcel Dekker, 2002, pp. 311-346
- Carl Vilbrandt, Computer Aided Design's eXtended Dimensions http://journal.hyperdrome.net/issues/issue1/vilbrandt.html

