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Unit materials

• Lecture notes

• Seminar handouts

are available at

http://gm.softalliance.net/

Advice: download and print lecture notes

before the next lecture



Bird’s eye view of the course

Lecture topics:

I.    Basics of shape modeling

II. Curves and surfaces

III. Transformations

IV. Solid modeling

V. Procedural modeling

VI. Applications
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Surfaces
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Contents

• Parametric curves
• Polar coordinates
• Cylindrical coordinates
• Interpolation and approximation 
• Parametric surfaces
• Spherical coordinates
• Trimmed parametric surfaces



Mapping of a Known Set

Parametric form

M :  A  B



Parametric Curve Notion

Parametric equations of a curve are obtained by 
introducing one more extra variable t, or a 
parameter, and calculating n-D point coordinates 
as functions of the parameter t:

x1 = φ1(t)

x2 = φ2(t)

... =

xn = φn(t)

A parametric curve is defined by a mapping of a

unit segment to n-D space.



Parametric Curves

Each component of a 
point on the planar 
curve is a function of 
t, which lies in 
the parameter 
interval [0, 1] on the 
real line. Points on 
the curve are 
described by a pair of 
functions of t: 

x(t), y(t)

Planar curve
(2D space)



Straight line and segment

Infinite straight line 
x = x0 + at

y = y0 + bt

t]-, +[

(x0, y0 )

(x0, y0 )

(x1, y1 ) Straight line segment
x = x0 + (x1-x0)t

y = y0 + (y1-y0)t

t [0, 1]



Circle

x = x0 + R cos t 

y = y0 + R sin t

(x0, y0) circle center

R is a radius 

t [0, 2] angle

(x0, y0 )



Polar coordinate system

The polar coordinate system on a 
plane is defined by
• an origin, point O
• a semi-infinite line L leading 
from this point (polar axis) 
• a point P representation by a 
tuple of two components (r, θ ):

r ≥ 0 is the distance from

the origin to the point P

0 ≤  ≤ 360º is the angle

between the polar axis and
the line from the origin to
the point P. 

P1

P2



Conversion between coordinate systems

From polar to Cartesian coordinates:

Polar coordinate system

From Cartesian to polar coordinates:



Spiral and Lissajous

Lissajous curves

x = cos pt

y = sin qt
for any integer p, q 

p = 3, q = 5

Archimedes spiral

Polar system:

r = t
 = t

Cartesian system:

x = t cos t
y = t sin t



Butterfly curve

Discovered by Temple H. Fay 

r =

Polar system:

Cartesian system:



Superquadric curves

x(t) = R (cos t) sign(cos t)

y(t) = R (sin t) sign(sin t)

(x0, y0)
(x0, y0) center

R - radius 

t [0, 2] angle



3D Viviani curve

Images by 

Paul Bourke

x = R (1 + cos(t)) 
y = R sin(t) 
z = 2R sin(t/2) 
-2 < t < 2 

Animation by Vladimir Rovenski



Cylindrical coordinates

A point P in 3D space is 
represented by a tuple of 
three components (r, θ, h):

r ≥ 0 is the distance from

the origin to the point P;

0 ≤  ≤ 360º is the angle 

between the polar axis and
the line from the origin to
the point P;

h (height) is the signed

distance from xy-plane to the 

point P. 



Helix

Cylindrical system:

r = R
 = t
h = t

Structural Elements of Protein

www.imb-jena.de

Image by Stéphane Mottelet

Cartesian system:

x = R cos t
y = R sin t
z = t



Interpolation and 

Approximation

Curve fitting is a method of constructing new data 

points from a discrete set of known data points    

(P0, P1, …,Pk).

The problem is to find a curve P(u) which closely fits 

the data points. 

Interpolation is a specific case of curve fitting, in 

which the curve must go exactly through the data 

points. 

Approximation curve passes near the data 

(control) points,  only endpoints are interpolated.



Interpolation problem

Data points Linear 
interpolation

Smooth 
interpolation



Linear interpolation

Geometric form:

where F0(u) and F1(u) are blending functions.

Algebraic form:



Linear Interpolation

Geometric form:

Algebraic form:

Form for parametric curves of any polynomial order

Matrix representation



Interpolation

• Four-point form

• Hermite interpolation

• Catmull-Rom spline

• Bézier spline

• B-splines

Interpolating curves



Splines

A spline is a mathematical 
technique for generating a 
single geometric object from 
pieces. 

Changes to one piece of the 
curve do not have significant 
effects on remote pieces. 

To define a spline curve for a 
range of values for the 
parameter u [0,1], one 
needs to assign curve pieces 
to the three intervals [0,1/3], 
[1/3,2/3], [2/3, 1]. 

u=1/3

u=2/3
u=0.0

P0 P1

P2

P3



Parametric form: P = P(u) = (x,y,z)

x = f(u)
y = g(u)
z = h(u)

Space-curve

P = P(u)    0.0 ≤ u ≤ 1.0

Four-point form

Fitting a cubic segment to four points

Interpolating curves

u=1/3

u=2/3
u=0.0

P0 P1

P2

P3

Equations to determine coefficients ck:

P(0) = P0 

P(1/3) = P1 

P(2/3) = P2

P(1) = P3 



P(u) = a*u3 + b*u2 + c*u + d

P(0.0) =  d = P0

P(1/3) = a*(1/3)3 + b*(1/3)2 + c*(1/3) + d = P1

P(2/3) = a*(2/3)3 + b*(2/3)2 + c*(2/3) + d = P2

P(1.0) = a + b + c + d = P3

Four-point form

System of linear equations for the coefficients of 
the cubic polynomials for each of coordinates (x,y,z)

u=1/3
u=2/3

u=0.0

u=1.0



Four-point form

Matrix form for a cubic 

parametric segment P(u)

fitting four given points

u=1/3
u=2/3

u=0.0

u=1.0

Problem: difficult to join such neighboring 

segments with C1 continuity



Derivatives of a cubic curve

Derivatives are necessary to specify 

tangent vectors for the curves of degree 

higher than 1.

For a cubic curve:

P’(u)

P(u)

Interpolating curves



Hermite interpolation

Given data: points + tangent vectors

Interpolating curves



P(u) = a*u3 + b*u2 + c*u + d

P(0.0) =  d = P0

P(1.0) = a + b + c + d = P1

P0
P1

P’0 P’1

P’(0.0) =  c = P’0
P’(1.0) =  3*a + 2*b + c = P’1

Hermite 
interpolation

System of linear equations for the coefficients of the 
cubic polynomials for each of coordinates (x,y,z)



Composite 

Hermite curve

Hermite 
interpolation

P0
P1

P’0 P’1

Matrix form for a Hermit segment P(u)



Catmull-Rom spline

This spline can be viewed as a Hermite curve, in which the 

tangent vectors at the internal points are automatically 

generated

Interpolating curves



Catmull-Rom Spline

The tangent vectors 

at the end points can 

be provided by the 

user or calculated 

automatically.



Bézier spline

The Bezier form uses two additional points to 

define tangent vectors at the ending points.

Interpolating curves

Hermit segment Bézier segment



Bézier spline

A cubic Bézier curve is defined by 
the beginning and ending points 
P0 and P3 (interpolated) and two 
interior points P1 and P2 (shape 
control)

The Bézier curve uses auxiliary 
control points P1 and P2 to define 
tangent vectors at P0 and P3 
respectively

P’(0) = P1 – P0

P’(1) = P3 – P2

P0

P1

P2

P3



Matrix form for a cubic 
Bézier curve 

Bézier spline

P0

P1

P2

P3



Bézier spline

Bézier spline for n control points Pi 

Where B i,n(t) are weighting functions called Bernstein polynomials: 

i=0 i=1

i=2
n=5

Degree of the polynomial grows with 

the number of control points.



Bézier spline

The Bézier curve always passes through the first and last 
control points and lies within the convex hull of the 
control points. 

Continuity between adjacent segments in a composite 
Bézier curve can be controlled by the collinearity of the 
control points on both sides of a shared endpoint of two 
segments.



B-spline is a generalization of the Bézier 

spline:

B-spline

• Any number of points can be added without increasing the degree of the 

polynomial.

• The spline is completely local - changes to a control point only affects the 

curve in that locality

• Closed curves can be created by making the first and last points the same, 

although continuity will not be maintained automatically.

• B-splines lie in the convex hull of the control points. 

where Pi are control points and Ni are called 

blending functions.



Interpolating curve

passes through the 

given control points:

Hermite curve,

Catmull-Rom spline

Requirements to Curves

Approximating curve

passes near the control 

points,  only endpoints 

are interpolated:

Bezier spline, B-spline

• Interpolation vs Approximation

Exact desired curve                Design of a new curve



Requirements to Interpolation

• Continuity – smoothness of the curve

Positional C0 discontinuity             Tangential C1 discontinuity 

Positional  and tangential continuity,

curvature discontinuity 

Positional, tangential, and

curvature continuity 



Requirements to Interpolation

• Continuity

C1 continuity

Hermite curve, Catmull-Rom spline
parabolic blending, cubic Bezier curve

C2 continuity

compound Hermite curve, B-spline



• Complexity – influences computation time.
Cubic polynomials are the lowest order polynomials.

• Global vs local control

Local control: moving one point changes the curve locally:
Catmull-Rom splines, cubic Bezier and B-splines –
more desirable

Global control: moving one point changes the entire curve:
Hermite curve with second-order continuity, higher order 
Bezier and B-splines 

Requirements to Curves
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Parametric surface notion

Parametric equations of a surface are obtained by 
introducing two more extra variables (u,v), or 
parameters, and calculating n-D point coordinates 
as functions of the parameters u and v :

x1 = φ1(u,v)

x2 = φ2(u,v)

... =

xn = φn(u,v)

A parametric surface is defined by a mapping of 
a unit square to n-D space



Parametric surface notion

Each component of a point on 
the surface is a function of u
andv which both lie in 
the parameter interval [0, 1] 
on the real line. The point 

(u,v) lies in the unit 
square on the uv-plane. 

Points on the surface are 
described by three functions:

Surface in 3D space

(x(u,v), y(u,v), z(u,v))



Parametric plane



Point P is represented by a tuple 
of three components (ρ,φ,θ). 

radius is the distance between the 
point P and the origin, 

is the angle between the z-axis 
and the line from the origin to the 
point P, 

is the angle between the 
positive x-axis and the line from 
the origin to the point P projected 
onto the xy-plane. 

Spherical coordinates



Parametric Sphere Model

In spherical coordinates:

ρ = R

R

φ

θ

Parametric form:



Spring

x = [1 - r1 * cos(v)] * cos(u)

y = [1 - r1 * cos(v)] * sin(u)

z = r2 * [sin(v) + periodlength * u / pi]

r1 = 0.25, r2 = 0.25, 

periodlength=3.0 

r1 = 0.5, r2 = 0.5, 

periodlength=1.5 



Cubic Polynomial Surfaces

• Interpolating surface patch

• Bezier patch

• B-spline patch



Interpolating  Surface Patch



Utah Teapot



Surface with boundary

A surface may have a 

boundary, where the 

surface ends. 

For example, the boundary 

of a hemisphere would be 

the circle around the edge. 



Trimmed parametric surfaces

A parametric surface 
with boundary can be 
trimmed by

• Edges for the surface 
other than those 
defined by the uv unit 
square. 

• Holes in a surface.
• Defining boundary 

edges using trim 
curves and loops.

Surface with boundary

Image by Ken Takusagawa



Trimmed parametric surfaces

• Trim loops are defined in 

the uv-square and 

mapped to 3D space

• Left hand rule

• Clockwise loop removes 

a hole

• Counterclockwise loop 

keeps the enclosed 

region and eliminates 

everything outside. 



Combining two 
trimmed surfaces

Combining with 
continuity matching

Trimmed parametric surfaces

www.csi-concepts.com/extreme.htm

The basic boundary constructing operation for solid modeling



Composite surface of 

trimmed NURBS surfaces, 

from proEnginner 

Trimmed parametric surfaces



The surface model of a 

racing ski helmet 

generated in Cadkey 

Workshop by Louis 

Garneau Sports Inc., 

Quebec, Canada, 

www.louisgarneau.com 

Trimmed parametric surfaces
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