Implicit curves and surfaces

Algebraic objects, blobby objects, RBF

Alexander Pasko, Evgenii Maltsev, Dmitry Popov

Solid modelling

Computer representations

- 3-dimensional object is a point set
- There are 2 fundamental ways to represent a point set
- Enumerative (and combinatorial) representations specify the rules for generating points in the set (and no other points). Examples:
- Enumeration (explicit point set)
- Groupings (voxels)
- Cell complexes (points + neighbourhood information)
- Parametric representation
- Explicit representation
- Implicit (and constructive) representation gives rules for testing which points belong to the set and which are not. Examples:
- Implicit representation (some predicate can be evaluated on any point of space)
- Constructive Solid Geometry (CSG) (constructive tree contains a limited set of solid objects and Boolean operations)

Implicit representation

- A function which is not defined explicitly, but rather is defined in terms of algebraic relationship is an implicit function
- In the implicit form the points belonging to the object are given indirectly through a point-membership classification function (implicit function).
$f(x, y)=0$ - curve on a plane $f(x, y, z)=0$ - surface in 3D space
- Example:

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x^{2}+y^{2}-1=0
\end{aligned}
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0
$$

Simple objects: line and plane

- Straight line (2D)
$\mathrm{n}=\left(n_{x}, n_{y}\right)-$ a normal vector
$\mathrm{p}=(\mathrm{x}, \mathrm{y})-$ position vector
$n_{x} x+n_{y} y-d=0$

- Plane (3D)
$\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)-$ a normal vector to the plane $\mathrm{p}_{\mathbf{o}}=\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{0}\right)$ - a point on the plane
$p=(x, y, z)-$ position vector
$\mathbf{n} \cdot \mathbf{p}-\mathbf{n} \cdot \mathbf{p}_{\mathbf{o}}=\mathbf{0}$
$n_{x} x+n_{y} y+n_{z} z-\left(n_{x} x_{0}+n_{y} y_{0}+n_{z} z_{0}\right)=0$

Simple objects: circle and ellipse

- Circle
- Parametric form

$$
\begin{aligned}
& x=x_{0}+r \cos t \\
& y=y_{0}+r \sin t
\end{aligned}
$$

- Implicit form

$$
\begin{aligned}
& \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} \\
& \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}-r^{2}=0
\end{aligned}
$$

- Ellipse

$$
\frac{\left(x-x_{0}\right)^{2}}{r^{2}}+\frac{\left(y-y_{0}\right)^{2}}{r^{2}}-1=0
$$

- Parametric form

$$
\begin{aligned}
& x=x_{0}+a \cos t \\
& y=y_{0}+b \sin t
\end{aligned}
$$

- Implicit form

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}-1=0
$$

Simple objects: sphere and ellipsoid

- Sphere

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}-r^{2}=0
$$

- Ellipsoid

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}+\frac{\left(z-z_{0}\right)^{2}}{c^{2}}-1=0
$$

Algebraic curves and surfaces

- Algebraic curve is the set of roots of an equation $f(x, y)=0$, where $f(x, y)=0$ is a polynomial in x and y
- Coefficients of the polynomial can be defined not only over a set of real numbers, but generally over any field \boldsymbol{K} (e.g. set of complex numbers). In this case it is said that we have an algebraic curve over a field \boldsymbol{K}.
- Example:
- straight line $n_{x} x+n_{y} y-d=0$
- circle $\frac{\left(x-x_{0}\right)^{2}}{r^{2}}+\frac{\left(y-y_{0}\right)^{2}}{r^{2}}-1=0$
- Algebraic surface is the set of roots of a polynomial $f(x, y, z)=0$
- Example:
- sphere $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}-r^{2}=0$

Algebraic curves and surfaces

- If the defining function is a polynomial function, we have an algebraic curve for functions on (x, y) or algebraic surface for functions on (x, y, z).
- Algebraic curves and surfaces are formally studied since $19^{\text {th }}$ century, but many facts were known before that.
- An algebraic curve is said to be of degree $n=\max (i+j)$ where n is the maximum sum of powers of all terms $a_{m} x^{i_{m}} y^{j_{m}}$
- Example: straight line $n_{x} x+n_{y} y-d=0$, degree $n=1$
- An algebraic surface is said to be of degree $n=\max (i+j+k)$ where n is the maximum sum of powers of all terms $a_{m} x^{i_{m}} y^{j_{m}} z^{k_{m}}$
- Example:
- Sphere $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}-r^{2}=0$
- Degree $n=2$

Degree of algebraic curves

- Quadratic curves are algebraic curves of a degree 2
- Examples: conic sections
- The conic sections are the curves generated by the intersections of a plane with a conical surface
- Types of conic sections:
- Circle

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}-r^{2}=0
$$

- Ellipse $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}-1=0$
- Parabola $\left(y-y_{0}\right)^{2}-4 a\left(x-x_{0}\right)^{2}=0$
- Hyperbola

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}-1=0
$$

Quadratic surfaces

- Quadratic surfaces are algebraic surfaces of a degree 2. Examples:
- Cylindrical surface

$$
\frac{\left(x-x_{0}\right)^{2}}{r^{2}}+\frac{\left(y-y_{0}\right)^{2}}{r^{2}}-1=0
$$

- Conical surface

$$
\frac{\left(x-x_{0}\right)^{2}}{r^{2}}+\frac{\left(y-y_{0}\right)^{2}}{r^{2}}-\left(z-z_{0}\right)^{2}=0
$$

- Hyperbolic paraboloid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}=0
$$

Cubic surfaces

- Cubic surfaces are algebraic surfaces of a degree 3. Examples:
- Ding-dong surface

$$
x^{2}+y^{2}=(1-z) z^{2}
$$

- Möbius strip

$$
x^{2} y-R^{2} y+y^{3}-2 R x z-2 x^{2} z-2 y^{2} z+y z^{2}=0
$$

Quartic surfaces

- Quartic surfaces are algebraic surfaces of a degree 4. Examples:
- Torus: a surface of revolution generated by revolving a circle in three dimensional space about an axis coplanar with the circle. It is assumed that the axis does not touch the circle.

$$
\left(R^{2}+x^{2}+y^{2}+z^{2}-r^{2}\right)^{2}-4 R^{2}\left(x^{2}+y^{2}\right)=0
$$

- Tanglecube

$$
x^{4}-5 x^{2}+y^{4}-5 y^{2}+z^{4}-5 z^{2}+11.8=0
$$

- Dupin cyclide

$$
\left(x^{2}+y^{2}+z^{2}+b^{2}-d^{2}\right)^{2}-4(a x-c d)^{2}-4 b^{2} y^{2}=0
$$

Rendering of algebraic curves and surfaces

- Ray-object intersection, general idea:

1. Parametric form for the ray

- $\quad x=x(t), y=y(t), z=z(t)$

2. Implicit form for the object

- $f(x, y, z)=0$

3. Combine both equations: substitute parametric x, y, z for the line to the implicit equation of the object
4. Solve the resulting equation for t
5. Get the resulting points by calculating the points on the line for resulting t's

The equation can be solved if it is quadric, cubic or quartic

Rendering of algebraic curves and surfaces

- Line-circle intersection

Line:
Circle:

$$
\begin{aligned}
& x=a_{x}+d_{x} t \quad\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}-r^{2}=0 \\
& y=a_{y}+d_{y} t \\
& \left(a_{x}+d_{x} t-x_{0}\right)^{2}+\left(a_{y}+d_{y} t-y_{0}\right)^{2}-r^{2}=0
\end{aligned}
$$

$t^{2}\left(d_{x}^{2}+d_{y}^{2}\right)+t\left(2\left(a_{x}-x_{0}\right) d_{x}+2\left(a_{y}-y_{0}\right) d_{y}\right)+\left(\left(a_{x}-x_{0}\right)^{2}+\left(a_{y}-y_{0}\right)^{2}-r^{2}\right)=0$
0 roots = no intersection, 1 root - the line touches the circle, 2 roots - the line intersects the circle in two points
Direct rendering for algebraic curve:

- For every line in the viewport window, create the ray starting in the leftmost pixel and ending in the rightmost pixel (or vice versa)
- Intersect with the curve, find point(s), plot these points.

Blobby objects

- By a blobby object we mean a non-rigid object. That is things, like cloth, rubber, liquids, water droplets, etc.
- For example, in a chemical compound electron density clouds tend to be distorted by the presence of other atoms/molecules.
- Several models have been developed to handle these kind of objects.

Blobby objects

- One technique is to use a combination of Gaussian density functions (Gaussian bumps)

$$
\begin{aligned}
& f(x, y, z)=\sum_{k} b_{k} e^{-a_{k} r_{k}^{2}}-T=0 \\
& \text { where } r_{k}^{2}=x_{k}^{2}+y_{k}^{2}+z_{k}^{2} \\
& \text { and } \mathrm{T} \text { is a threshold }
\end{aligned}
$$

Metaballs (Blinn Blobbies)

Ray-traced metaballs

- Image courtesy of Ange Gabriel, rendered on Bryce Render+V4

