
Function Representation of the 3D objects 

Aim:  The study of the process of the geometric modeling with using the Function 

Representation of 3D models.      

Task:  Create 3D models using the geometric modeling language and system HyperFun.  

Result: The source code. The report.   

 

Theoretical part: 
 

HyperFun is a simple geometric modeling language for F-rep objects. F-rep stands for function 

representation. In F-rep, objects are described using a single real continuous function F(x1, x2, x3, 

..., xn) >= 0. (Website of project: http://hyperfun.org) 

Since F-rep models are more general than traditional skeletal implicit surfaces, convolution surfaces, 

distance-based models, CSG (Constructive Solid Geometry), sweeps, and voxel models, HyperFun 

can deal with all these geometric models. 

In HyperFun, F-rep objects are described using assignments, conditional selections, and iterations as 

in traditional programming languages. In addition to arithmetic and relational operators, HyperFun 

has built-in set-theoretic operators such as union, intersection, subtraction, and so on. Some 

predefined library primitives and operators are available in HyperFun. Using these functionalities, 

quite complex objects can be modeled. 

F-rep 

In F-rep (Function Representation), a geometric object is defined by a single real continuous 

function F(x1, x2, x3, ..., xn) >= 0. Let’s think why F(x1, x2, x3, ..., xn) >= 0 can represent an 

object. 

A geometric object in 3D space is described by: the inside, the surface, and the outside. 

 

We assume that F(x1, x2, x3, ..., xn) >= 0 is a rule which determines where a given point belongs, 

that is: 

F(x1, x2, x3, ..., xn) > 0  :  the inside of an object 

F(x1, x2, x3, ..., xn) = 0  :  the surface of an object 

http://hyperfun.org/


F(x1, x2, x3, ..., xn) < 0  :  the outside an object 

To make a mesh of triangles (polygonize) on the surface of an F-rep object, the function has to be 

sampled in space. The bounding box is used to limit a range of sampling in space, and it is divided 

into fixed-size grids. The function is sampled in each node of the grid; then polygons are generated 

based on the sampled values of the function. The high grid density makes a good approximation of 

an object, but the number of polygons increases. 

 

Geometric modeling using HyperFun  

We begin with a simple sphere. The program example1.hf describes a solid sphere: 

 

-- example1.hf 

 

my_model(x[3], a[1]) 

{ 

  my_model = 5^2 - (x[1]^2 + x[2]^2 + x[3]^2); 

} 

To see an object, the program has to be interpreted by visualization tools. We use the HyperFun 

Polygonizer that visualizes F-rep objects described in the HyperFun program with polygons. 

  hfp sphere.hf 

The following window will be shown, and you can see the resulting polygonized object. You can 

rotate an object with the left mouse button and scale with the right mouse button. Select Quit in the 

File menu to quit the program. 

 

 

Let’s see the program step by step. 



  line 1: -- sphere.hf 

  line 2: 

  line 3: my_model(x[3], a[1]) 

  line 4: { 

  line 5:   my_model = 5^2 - (x[1]^2 + x[2]^2 + x[3]^2); 

  line 6: } 

Line 1: The first line is a comment. The section from – to the newline is assumed to be a comment. 

You can insert comments anywhere in a program. 

 

Line 3: The HyperFun program begins with the object name my_model(x[3], a[1]), x and a are 

arrays. Note that x and a are reserved key words in HyperFun, so they can be used only in a special 

way: x is a point coordinates array and a is used to pass external values. In this example, a is not 

used. In HyperFun, an array index begins with 1. As defaults, x[1], x[2] and x[3] are mapped to 

point coordinates as: 

x[1] -> x 

x[2] -> y 

x[3] -> z 

Line 4, 6: The body of my_model is described in the block enclosed between { and }. Each 

statement must be terminated by a semicolon. 

Line5: 5^2 - (x[1]^2 + x[2]^2 + x[3]^2) represents 52 − (𝑥2 + 𝑦2 + 𝑧2). The following table shows 

arithmetic operators available in HyperFun. 

Arithmetic operators in HyperFun 

+ addition 

- subtraction 

* multiplication 

/ division 

^ power 

 

The object my_model has to return a function value; to do so my_model = is used. You can see later 

that local variables can be used in HyperFun; a variable which has the same name as an object is a 

special local variable used to return a value. This is like return used in C. The Polygonizer uses such 

values to visualize the objects. 



 

Use of library functions 

In the next example, we use a predefined library function available in HyperFun to model a sphere. 

-- example2.hf 

 

my_model(x[3], a[1]) 

{ 

  array center[3]; 

  center = [0.0, 0.0, 0.0]; 

  sphere = hfSphere(x, center, 5.0); 

  my_model = sphere; 

} 

Polygonize the above model with the command: 

hfp example2.hf 

The resulting object is the same as the first example. 

Let’s examine the program. The structure is almost the same as the first example, so only new things 

are explained here. 

line  1: -- example2.hf 

line  2: 

line  3: my_model(x[3], a[1]) 

line  4: { 

line  5:   array center[3]; 

line  6: 

line  7:   center = [0.0, 0.0, 0.0]; 

line  8:   sphere = hfSphere(x, center, 5.0); 

line  9:   my_model = sphere; 



line 10: } 

Line 5: array center[3] is a declaration of an array. An array must be declared at the beginning of an 

object’s block before being used. The keyword array is used to declare arrays. In this case, center is 

declared as an array with size 3. 

Line 7: The array center is initialized. There are two ways to initialize arrays: simultaneously and 

individually. 

-- Initialize an array simultaneously 

center = [0.0, 0.0, 0.0]; 

-- Initialize an array individually 

center[1] = 0.0; 

center[2] = 0.0; 

center[3] = 0.0; 

Line 8: hfSphere is a library function for a solid sphere. You can think of hfSphere as a black box 

that can represent a solid sphere, so you only specify its position and radius. HyperFun has such 

library functions and operations, see F-rep library. Here, sphere is a local variable to save the value 

which hfSphere returns. The only type of variables used in HyperFun is real, so you can use 

variables without declarations. 

Line 9: Finally, to return a value, my_model = sphere is used. 

 

Tasks: 
 

Modelling Implicit Surfaces Using Equations 

1. In the text editor type the following model of an ellipsoid: 

test(x[3],a[1]){ 

test = 1-(x[1]/3)^2 -(x[2]/5)^2 -(x[3]/7)^2; 

} 

2. Save the model to the tst.hf text file in the HyperFunPolygonizer (HPF) folder. Use the 

HyperFunPolygonizer to render the model with the command: 

hfp tst.hf 



3. Change the half-axes of the ellipsoid in the equation and get new surface. If you see 

trimmed ellipsoid you need to increase the bounding box size for the entire scene, for 

example: 

hfp tst.hf –b 10,12,15 

4. Type the model of an ellipsoid with parameters: 

test(x[3],a[3]) { 

test = 1-(x[1]/a[1])^2 -(x[2]/a[2])^2 -(x[3]/a[3])^2; 

} 

You can change parameter values with the command: 

hfp tst.hf –a 5,7,9 

5. Use the lecture notes and model a torus with the equation and with parameters. 

Render the torus with HFP. 

  



FRep Library Primitives 

1. Type the following model of an ellipsoid primitive: 

test(x[3],a[1]){ 

array center [3]; 

center=[0,0,0]; 

test = hfEllipsoid(x,center,6,2,2); 

} 

2. Save the model to the tst.hf text file in the HFP folder. Use the HyperFun Polygonizer to render 

the model with the command: 

hfp tst.hf 

3. Type the following model of an ellipsoid primitive with parameters: 

test(x[3],a[3]){ 

array center [3]; 

center=[0,0,0]; 

test = hfEllipsoid(x,center,a[1],a[2],a[3]); 

} 

You can change parameter values with the command: 

hfp tst.hf –a 5,7,9 

Try different half-axes by changing parameters. 

4. Make a model of a superellipsoid with two parameters in the array a[2] using the F-rep library 

primitive. Input different parameter values and render different superellipsoids 

  



Deformations 

1. In the text editor type the following model of a superellipsoid primitive: 

test(x[3],a[1]){  

array center [3]; 

center=[0,0,0]; 

test = hfSuperell(x, center, 6, 2, 2, 0.2, 0.2); 

} 

2. Save the model to the tst.hf text file in the HFP folder. Use the HyperFun Polygonizer to render 

the model with the command: 

hfp tst.hf 

3. Change the model by including a twisting operation: 

test(x[3],a[1]){ 

array center [3]; 

array xt[3]; 

xt[1]=x[1]; 

xt[2]=x[2]; 

xt[3]=x[3]; 

tmp = hfTwistX(xt,-6,6,0,-3.14); 

center=[0,0,0]; 

test = hfSuperell(xt,center,6,2,2,0.2,0.2); 

} 

Pay attention to the new xt argument of the hfSuperEll primitive! 

4. - Render the model with HFP.  

- Try different parameters of the twisting operation 

 

 



Example of loop operation: 

j=1; 

while (j <= 3) loop 

j = j + 1; 

endloop; 

 

Individual tasks: 
 

Create unit-cell and construct array 3x3x3 of this elements by repetition  

Example:  

Unit-cell:   Array: 

   

Variant 1: 

Unit-cell:  block (rectangle)  

Variant 2: 

Unit-cell:  prizm  (triangle) 

Variant 3: 

Unit-cell:  Sphere  

Variant 4: 

Unit-cell:  Ellipsoid 

Variant 5: 

Unit-cell:  Torus 

Variant 6: 



Unit-cell:  Cone 

 

    

   


